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Non-deterministic
models are
relevant for many
applications

Models with an uncontrollable source of stochasticity are
non-deterministic

Examples include:

*  Turbulent flow

- Particle-in-cell methods for plasma simulation
« Radiation transport [Clements, 2021]

«  Flows through random subsurfaces

*  Cybersecurity [Geraci, 2021]

*  Machine learning




s | Multifidelity uncertainty quantification

- Multifidelity (MF) approaches for uncertainty quantification (UQ) leverage
information from multiple sources which vary in accuracy and cost

- Objective is to improve reliability of statistics of high-fidelity computational models

- Non-deterministic models are candidates for both high- and low-fidelity information
sources

- The intrinsic stochasticity effectively weakens correlations between models

« Practitioners may try to drive stochastic noise contribution to zero (or as low as they
can afford)

Goal

Explore the efficacy of common MFUQ approaches (MLMC, MFMC) for non-
deterministic model sets




Preliminaries




Consider the mapping f: X x Q —» D which represents a computational model

y=f(x w)

- x € X is the set of accessible input parameters
« Explicitly specified for each model evaluation

* w € Qisthe set of inaccessible random variables
« The realization is not known, nor the underlying probability distribution
« Represents the intrinsic stochasticity in the model

« Practically, for a given x, y is a random variable over Q which we can characterize
statistically through realizations (replicas) {f(x, )}
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¢ | Preliminaries

We consider the quantity of interest (Qol) to be the expectation over w:

Ny,
1 : ~
000 = Ey[f] =Y f(x,0W) = 000
wj=1

« We assume the model cost C is 1.0
independent of the inputs
« The total cost of obtaining the > :
noisy Qol is N, C o X
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=
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In the multifidelity context, consider a set of models {f;}, for £ =1, ..., L

« Following the multifidelity Monte-Carlo literature, let f; be the highest fidelity model
« Let {C,}, be the costs of one realization of the models

- Let {Nw,{)}{, be the number of replicas for each model (these may be different from
model to model)

- We assume number of replicas is independent of the location x
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Mean estimators




N N Ny,
Optimal strategy QM = %Z Q(x) = %Z N—t)Zf(x(‘)'w(”) ~ E[Q(x)] ‘
for single fidelity = L -
Monte-Carlo v[Q¥¢] = S VIl |
estimator of the
mean is to use

only one replica By the law of total variance, it follows that
. 1 EloZ] |
MC] _
v[QMe] = N(\V[Q] + )

where E[¢2] = E|V,[f]] I




« Increasing the number of replicas for a particular model will improve its effective
correlations, but increase its effective cost

- For a given budget, this means improving correlations is at odds with exploring the
uncertain parameter space

« For a given number of model replicas, the MLMC and MFMC algorithms can be used
as normal

«  Model tuning exercise

I
1o 1 How do things change in a multifidelity setting? m
I



Basic steps for
non-deterministic
model set

Estimate cost, noise, and noisy correlation between
models with a pilot study

Estimate underlying “non-noisy” statistics
=  Variance deconvolution [Geraci, Olson 2022]

Decide on target
=  Total computational budget
=  Required statistical error

Solve optimization problem for a variety of estimators
=  How many samples for each model?
=  How many replicas per model?

Deploy optimal sampling strategy




2 I Multilevel Monte-Carlo estimator for the mean

Ney.e

fo (x0) ~ Qu(x)

=1

S

1
Qf(x)=m

-
Il

Define ¥,(x) = Q,(x) — Qp41(x)

L 1 Ny
=y {_7 @W)}
J N-f J
=1 i=1
L N, Ng.¢ Ny,e+1
1 1 ' . : 1 ' ,
— @, DYy _ - z (i),2
Sl e et ik 8 )
=1 i=1 =1 ’ j=1




Unlike single
fidelity, there
exists a trade-off
between replicas
and UQ samples

for MF methods

L ~
~ VY,
e 3,0
£=1

VIQs — Qp41] +

IE[UZM] + E[UZ),€+1]
Nw,{’ Nw,{’+1

Can show V[Y,] =

1 Elo? "1 E z
— W[QML] — Z Nlo 2 [O(-U 1?] N€ [U ,1€+1]

Consider two-model case:

V[oML] = V[Qur — QLF]_I_W[QLF:

Nyr Nip
1 IE[aw,HF] N 1 IE[O'(%’LF] 1 IE_GQZ),LF]
Nyp Nur NyLr

+ +

Nip Ny e

o



For a given number
of replicas,
classical MLMC
solution applies
(total budget

fixed)

S
[

L
_ 2 Vi
=1
Ctot W Yf
S C,
L

C, =N, {)C{) + Ny p41Crt1

S
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Classical solution
to optimization
problem applies.

Hints at trade-off
between
iIimproving
correlations and
iIncreasing
effective model
cost.

v[@MF]—“’[Ql][ 7oz~ p}

ﬁ C[él: éf]

" aaviad

Wy = Ny, ¢Cp

V|Q,| = V[Q,] +

2

o



oV|QMF]

an'l

Can show

> 0 always for non-trivial model
Optimal number of

high fidelity
replicas is always
one for MFMC Outline of proof

1. Differentiate MFMC variance expression

collections

2. Alot of algebra...
3. Recognize €|Q,, Q;] = C[Q4,Q,] for £+ 1

4. Use inequalities C[Q4, Q;] < V[Q,]1V[Q,], V|0,| = V[Q,]




Numerical examples




Roadmap

1. Explore optimal estimator variance vs. number of replicas for two model case (noisy
polynomials)

2. Same as 1, but tweak noise levels

3. Extend polynomial test case to four models

4. Explore pilot reliability



Two model example

Consider a two model set of noisy monomials:

fur = fi=x"+ wq fir = f2 =x° + w;3

with x ~ U(-1,1) w; ~ N (0, 07)

We can characterize two model sets by Lod = Qr )
: ' fLF
1. The cost ratio: Crr/Cyr —~ 05l x O1r |
2. The“non-noisy” model correlation: p &
n M n H 5\ 0°0 1 7
3. The "non-noisy” variances: V[Q,] g I
S
4. The stochastic noise levels: E[o/ /] —0:57 l |
—1.0 - -




Lower noise in LF
model

No benefit to
stochastic
averaging, still

performant despite
fairly sub-optimal
correlation.

Estimator variance

0.85 9 p? (non-noisy)
) MC reference 0.80 7 e—
_5 |
9 x 10 / 0.75 4 se—
_5
810 % 0.70 -
7x107° / 0.65 4%
6 % 10-5 | 0.60 -
0.55 -
). g
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No LF Nu.Lr
— Nyur=1 — Nypur=2 — Nywr=4 — Nyur=©6

Fixed budget (1000 HF evals)

CLF/CHF — 001
Oyr = 2
O = .05

MFMC result



0.85 - p? (non-noisy)

Higher noise in LF . MC reference
model g - 0.80 -
§ 6 x 1072
. . . o (Y
Replication is §4X105_\ 0.75 1
beneficial, "noisy” g, N
correlation can be 0.70 7
increased 2 % 1075 \*_/
0 o = 0.65 1
S.Ignlflcantly for i é 1IO 1I5 2I0 i é 1IO 1I5 2I0
little cost. NoLr NoLp
— Nygr=1 — Nygr=2 — Nygr=4 — Nuour=06
Fixed budget (1000 HF evals) I
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O-HF = 05
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MFMC result I



Many model example

Consider a four model set of noisy monomials:

fi=x"+w; fo=x°+ w, fs=x>+ w3 fa =%+ w,y

with x ~ U(-1,1) w; ~ N (0, 07)

We can characterize many model sets by
1. The cost ratios: Cp/C;

2. The “non-noisy” model correlations:
p1e Here we have p7, = {1,.988,.932,.745}

and fix C,/C; = {1,.1,.01,.001}

3. The "non-noisy” variances: V[Q,] o, =1{2,.2,.2,.2)
P — V)L 4y

4. The stochastic noise levels: IE[O'(‘Z)J]



4+ | Many model problem

- Optimal solution found by enumerating over potential model orderings/subsets and
number of replicas

- Minimal estimator variance for fixed budget

- Model set search space includes sets of size 2, 3, and 4
- HF model (f;) always included

* HF replicas fixed to be 1

Optimal solution for MFMC is to use models (1,3,4)
Optimal for MLMC is to use models (1,3) |




Equal noise in all
models (4 model set)

Using three models
(1,3,4) is optimal for
MFMC.

Despite relatively
low final "noisy”
correlations, MFMC
beats MC.

MULMC cannot.

Estimator variance

2 x 1074+

1074 .

MFMC MLMC
~
MLMC 4 model
\&1 k/
MC reference | | mmmmm—m———— «T T
\ MLMC 2 model
_________________________ 7_ T
| MC reference
MFMC 4 model ~ MFMC 2 model
1 5 10 1 5 10
Nw,S Nw,S
— w,4= 1 - Nw,4: 3 - Nw,4: 5 = Nw,4: 7

Fixed budget (1000 HF evals)

C,/C; ={1,.1,.01,.001}
o, =1{2,.2,.2,.2}

Na),l == 1 |S flxed
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Under-resolved
pilots can return
negative
parametric
variances or non-
realizable
correlations
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»7 | Small pilot with few replicas can lead to unrealistic correlations,
incorrect model selection, and errors in variance prediction
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28 | Statistics improve with more samples and replicas
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o | Convergence to optimal model set, but pilot cost quite large
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Multifidelity approaches can provide variance reduction for mean estimation of Qols
from non-deterministic model sets

« This is a specific example of model tuning for multifidelity UQ

- Some practical concerns of note

« estimating statistics from pilot
model ordering and the cost/correlation constraints of the analytical MFMC solution

* the minimum number of replicas may be constrained by other analyses

- Extension to ACV approaches [Gorodetsky, 2020]

- Computation of higher order statistics/tail probabilities

I
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* PDE-based examples
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