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Non-deterministic 
models are 
relevant for many 
applications

Models with an uncontrollable source of stochasticity are 
non-deterministic

Examples include:

• Turbulent flow

• Particle-in-cell methods for plasma simulation

• Radiation transport [Clements, 2021]

• Flows through random subsurfaces

• Cybersecurity [Geraci, 2021]

• Machine learning
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Multifidelity uncertainty quantification

• Multifidelity (MF) approaches for uncertainty quantification (UQ) leverage 
information from multiple sources which vary in accuracy and cost

• Objective is to improve reliability of statistics of high-fidelity computational models

• Non-deterministic models are candidates for both high- and low-fidelity information 
sources

• The intrinsic stochasticity effectively weakens correlations between models

• Practitioners may try to drive stochastic noise contribution to zero (or as low as they 
can afford)

3

Goal

Explore the efficacy of common MFUQ approaches (MLMC, MFMC) for non-
deterministic model sets



Preliminaries
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Preliminaries

Consider the mapping 𝑓: 𝑋 × Ω → 𝒟 which represents a computational model
𝑦 = 𝑓 𝑥, 𝜔

• 𝑥 ∈ 𝑋 is the set of accessible input parameters
• Explicitly specified for each model evaluation

• 𝜔 ∈ Ω is the set of inaccessible random variables
• The realization is not known, nor the underlying probability distribution
• Represents the intrinsic stochasticity in the model

• Practically, for a given 𝑥, 𝑦 is a random variable over Ω which we can characterize 
statistically through realizations (replicas) 𝑓 𝑥, 𝜔 !

!
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Preliminaries

We consider the quantity of interest (QoI) to be the expectation over 𝜔:

𝑄 𝑥 = 𝔼" 𝑓 ≈
1
𝑁"

3
!#$

%!

𝑓 𝑥, 𝜔 ! = 4𝑄 𝑥
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• We assume the model cost 𝐶 is 
independent of the inputs

• The total cost of obtaining the 
noisy QoI is 𝑁"𝐶



Preliminaries

In the multifidelity context, consider a set of models 𝑓ℓ ℓ for ℓ = 1,… , 𝐿

• Following the multifidelity Monte-Carlo literature, let 𝑓$ be the highest fidelity model

• Let 𝐶ℓ ℓ be the costs of one realization of the models

• Let 𝑁",ℓ ℓ be the number of replicas for each model (these may be different from 
model to model)

• We assume number of replicas is independent of the location 𝑥
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Mean estimators
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Optimal strategy 
for single fidelity 
Monte-Carlo 
estimator of the 
mean is to use 
only one replica

9𝑄() =
1
𝑁
3
*#$

%

4𝑄 𝑥 * =
1
𝑁
3
*#$

%
1
𝑁"

3
!#$

%!

𝑓 𝑥 * , 𝜔 ! ≈ 𝔼 𝑄 𝑥

𝕍 9𝑄() =
1
𝑁
𝕍[ 4𝑄]

By the law of total variance, it follows that

𝕍 9𝑄() =
1
𝑁

𝕍 𝑄 +
𝔼 𝜎"+

𝑁"

where 𝔼 𝜎"+ = 𝔼 𝕍" 𝑓
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How do things change in a multifidelity setting?

• Increasing the number of replicas for a particular model will improve its effective 
correlations, but increase its effective cost

• For a given budget, this means improving correlations is at odds with exploring the 
uncertain parameter space

• For a given number of model replicas, the MLMC and MFMC algorithms can be used 
as normal
• Model tuning exercise
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Basic steps for 
non-deterministic 
model set

1. Estimate cost, noise, and noisy correlation between 
models with a pilot study

2. Estimate underlying “non-noisy” statistics
§ Variance deconvolution [Geraci, Olson 2022]

3. Decide on target
§ Total computational budget
§ Required statistical error

4. Solve optimization problem for a variety of estimators
§ How many samples for each model?
§ How many replicas per model?

5. Deploy optimal sampling strategy
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Multilevel Monte-Carlo estimator for the mean

!𝑄ℓ 𝑥 ≡
1
𝑁#,ℓ
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Unlike single 
fidelity, there 
exists a trade-off 
between replicas 
and UQ samples 
for MF methods

𝕍 9𝑄(, =3
ℓ#$

,
𝕍 4𝑌ℓ
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For a given number 
of replicas, 
classical MLMC 
solution applies 
(total budget 
fixed)

𝕍 9𝑄(, =3
ℓ#$

,
𝕍 4𝑌ℓ
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𝑁ℓ =
𝐶343
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𝑆 = 3
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,

𝕍 4𝑌5 C𝐶5

C𝐶ℓ = 𝑁",ℓ𝐶ℓ + 𝑁",ℓ-$𝐶ℓ-$
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Multifidelity Monte-Carlo
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Classical solution 
to optimization 
problem applies.

Hints at trade-off 
between 
improving 
correlations and 
increasing 
effective model 
cost.

𝕍 9𝑄(2 =
𝕍 4𝑄$
𝐶343

3
ℓ#$

,
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+
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𝕍 4𝑄$ 𝕍 4𝑄ℓ

E𝑊ℓ = 𝑁",ℓ𝐶ℓ
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Optimal number of 
high fidelity 
replicas is always 
one for MFMC

Can show 6𝕍
8912

6%!,/
> 0 always for non-trivial model 

collections

Outline of proof

1. Differentiate MFMC variance expression

2. A lot of algebra…

3. Recognize ℂ 4𝑄$, 4𝑄ℓ = ℂ 𝑄$, 𝑄ℓ for ℓ ≠ 1

4. Use inequalities ℂ 𝑄$, 𝑄ℓ ≤ 𝕍 𝑄$ 𝕍 𝑄ℓ , 𝕍 4𝑄ℓ ≥ 𝕍 𝑄ℓ
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Numerical examples
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Roadmap

1. Explore optimal estimator variance vs. number of replicas for two model case (noisy 
polynomials)

2. Same as 1, but tweak noise levels

3. Extend polynomial test case to four models

4. Explore pilot reliability



Two model example

Consider a two model set of noisy monomials:

𝑓12 ≡ 𝑓$ = 𝑥: + 𝜔$ 𝑓,2 ≡ 𝑓+ = 𝑥; + 𝜔;

with 𝑥 ∼ 𝑈 −1,1 𝜔* ∼ 𝒩 0, 𝜎*

We can characterize two model sets by

1. The cost ratio: 𝐶,2/𝐶12

2. The “non-noisy” model correlation: 𝜌

3. The ”non-noisy” variances: 𝕍 𝑄ℓ

4. The stochastic noise levels: 𝔼 𝜎",ℓ+
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Lower noise in LF 
model

No benefit to 
stochastic 
averaging, still 
performant despite 
fairly sub-optimal 
correlation. 1 5 10 15 20
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Fixed budget (1000 HF evals)

𝐶!"/𝐶#" = .001
𝜎#" = .2
𝜎!" = .05

MFMC result



Higher noise in LF 
model

Replication is 
beneficial, “noisy” 
correlation can be 
increased 
significantly for 
little cost. 1 5 10 15 20
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Many model example

Consider a four model set of noisy monomials:

𝑓$ = 𝑥: + 𝜔$ 𝑓+ = 𝑥< + 𝜔+ 𝑓; = 𝑥; + 𝜔; 𝑓= = 𝑥 + 𝜔=

with 𝑥 ∼ 𝑈 −1,1 𝜔* ∼ 𝒩 0, 𝜎*

Here we have 𝜌$,ℓ+ = 1, . 988, . 932, . 745
and fix 𝐶ℓ/𝐶$ = {1, . 1, . 01, . 001}

𝜎ℓ = {.2, . 2, . 2, . 2}

We can characterize many model sets by

1. The cost ratios: 𝐶ℓ/𝐶$

2. The “non-noisy” model correlations: 
𝜌$,ℓ

3. The ”non-noisy” variances: 𝕍 𝑄ℓ

4. The stochastic noise levels: 𝔼 𝜎",ℓ+



Many model problem

• Optimal solution found by enumerating over potential model orderings/subsets and 
number of replicas
• Minimal estimator variance for fixed budget

• Model set search space includes sets of size 2, 3, and 4 
• HF model (𝑓!) always included

• HF replicas fixed to be 1
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Optimal solution for MFMC is to use models (1,3,4)

Optimal for MLMC is to use models (1,3)



Equal noise in all 
models (4 model set)

Using three models 
(1,3,4) is optimal for 
MFMC. 

Despite relatively 
low final “noisy” 
correlations, MFMC 
beats MC.

MLMC cannot.
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Fixed budget (1000 HF evals)

𝐶ℓ/𝐶! = {1, . 1, . 01, . 001}
𝜎ℓ = {.2, . 2, . 2, . 2}

𝑁#,! = 1 is fixed



Under-resolved 
pilots can return 
negative 
parametric 
variances or non-
realizable 
correlations
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Pilot study failures

𝜎ℓ = {.2, . 2, . 2, . 2}



Small pilot with few replicas can lead to unrealistic correlations, 
incorrect model selection, and errors in variance prediction
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Statistics improve with more samples and replicas28
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Convergence to optimal model set, but pilot cost quite large29
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Conclusions and future work

• Multifidelity approaches can provide variance reduction for mean estimation of QoIs
from non-deterministic model sets

• This is a specific example of model tuning for multifidelity UQ

• Some practical concerns of note
• estimating statistics from pilot
• model ordering and the cost/correlation constraints of the analytical MFMC solution
• the minimum number of replicas may be constrained by other analyses

• Extension to ACV approaches [Gorodetsky, 2020]

• Computation of higher order statistics/tail probabilities

• PDE-based examples
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