This paper describes objective technical results and analysis. Any subijective views or opinions that mightlbelexpressed}in|
the paper do not necessarily represent the views of the U.S. Department of Energy or the United States'Government.

- "r--., : . - &ndia
R TR B S S National
C o - Laboratories

SAND2022-7261C

Overview of the latest
features and capabilities in
the Dakota software

J. Adam Stephens, D. Thomas Seidl, Brian M.
Adams, Gianluca Geraci

Sandia National Laboratories

©ENERGY NISH
Wamrm Acvmee Brisfy Ambremabue
Sandia National Laboratories is a
multimission laboratory managed
and operated by National Technology
& Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of
Honeywell International Inc., for the
U.S. Department of Energy’s National
Nuclear Security Administration under
contract DE-NA0003525.

SAND2022-6778 C

2022 ECCOMAS Congress
June 8, 2022

Oslo, Norway

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering [SolutionsfofiSandia,|LLC, alwhollylowned!
subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administrationfundercontract DE-NA0003525.

What is Dakota?

Open-source software for black-box, ensemble analysis of computational simulations

« Suite of iterative mathematical and statistical
methods and a convenient means of
interfacing with (just about) any simulation
software

* Provides scientists, engineers, and decision
makers greater insight into the predictions of)} <
their models via:

* Global Sensitivity Analysis
* Uncertainty Quantification
* Optimization

« Calibration

DAKOTA Voltage drop,
peak current

* Production and Research focus

* Works on desktops and HPCs and the major
operating systems (*nix, OS X, Windows)

« Command line interface, GUI, and API

s 1| Capabilities

Common interface to established and cutting edge algorithms

Sensitivity Analysis
Designs: MC/LHS, DACE, sparse
grid, one-at-a-time
Analysis: correlations, scatter,
Morris effects, Sobol indices

Uncertainty Quantification
MC/LHS/Adaptive Sampling
MF/ML sampling and surrogates
Reliability

Stochastic expansions

Epistemic methods

Optimization
Gradient-based local
Derivative-free local
Global/heuristics
Surrogate-based

Calibration
Tailored gradient-based
Use any optimizer
Bayesian inference

Mixed aleatory/epistemic UQ

Optimization under
uncertainty

Parallel execution

HDF5 Output
Direct Python interface

Develop simulation driver once; use in different kinds of studies

+ | Multifidelity and Multilevel UQ Methods

Exploit hierarchies of models to compute lower variance estimates of moments at lower cost

« Dakota 6.10 (May "19) included Control Variate Monte Carlo (CVYMC), Multilevel (ML)MC, and MLCV MC.

Multifidelity Hierarchy Multilevel Hierarchy
Predictions of lower fidelity models are Model predictions converge as
biased, regardless of model resolution resolution is improved

« Model costs, variance, and correlations are estimated by a pilot study, and a constrained optimization
problem is solved to select a sample schedule that minimizes the cost for a desired estimator variance

B F
Lvl N !

MLCV MC
(2D hierarchy)

MLMC
Multiple model resolutions
(Prediction converges as
resolution is improved)

CVMC
High and Low Fidelity
(LF prediction is biased)

5 | Multifidelity and Multilevel UQ Methods

Lifting Restrictions on Model Hierarchies

Multifidelity Monte Carlo - 6.15 (Nov ‘21)

* HF HF MF

LF MF LF

Lvl O Lvl 1 Lvl 1

Lvl O LvI 1 Lvl O

1D hierarchy of models of unlimited depth; convergence requirement lifted

Approximate Control Variate - 6.15 (Nov ‘21)

« “Cloud” of models; no hierarchy assumed
 Recursion limit on variance reduction (1 — p?) is lifted

s | Multifidelity and Multilevel UQ Methods

Other Recent Algorithmic and Usability Improvements
Pilot Projection - 6.16 (May ‘22) Model Tuning - 6.16 (May 22)
Tune solution level to achieve the best

ariance reduction and cost
Which estimator (CYMC, MLMC, ACV, etc) "o N

provides the greatest variance reduction Variance ACV-MF
1 e 3 ®
at the least cost? R A
0.0012 ':'
.
& 0.0010 - 7
: ,) T S /!
Geraci/Reuter’s talk: Mu/t/f/de{/ty uQ 2 00008] o 4
workflows with Dakota’s graphical user £ e /
. & 0.0006 N /
interface “u. g
0.0004 - * - i
hah PP Y
0.I6 0.'8 1.'0 1f2 1j4 1.'6

Mike Eldred's talk: Model tuning for
multifidelity sampling in Dakota

I
, | Batch Parallel Efficient Global Optimization (EGO) m

Efficiently use parallel computing resources to perform global optimization

EGO uses the mean and variance prediction of a Gaussian process to balance exploration and exploitation
4 Original EGO Algorithm)
1. Train a GP on an initial set of samples.
2. Identify candidate: argmaxEI (@(u)), where EI (G (u)) = E[max(G(u*) — G(u),0)]
u
3. Evaluate candidate using the truth model; incorporate into the GP’s training set
\4. If not converged, go to 2.)
. 1 ' 4 ' L
Improvement 1 - 6.12 (May ‘20) ’l" 1 ; t
Batch Sequential EGO. Instead of a single point, 42 - : =
batches are added. The additional points are g L6 L 19 L
based on hallucination. s e
/ 1,1 g1 B 12 \ I
Improvement 2 - 6.14 (May '21) ,) N o
Batch Parallel EGO. Evaluations and updates ’I" i } i
to the GP occur asynchronously. ol e }L M S
\ Time — /
1. Tran, Anh, et al. https://doi.org/10.1007/s00158-021-03102-y Fjgure Courtesy Kandasamy etal 2017

2. Tran, Anh, et al. https://doi.org/10.1016/j.cma.2018.12.033

Surrogates Library

Refresh and modularize Dakota's Surrogate Modeling Capabilities

Key Features of Dakota’s new surrogate
library:

« Export models from and import back

into Dakota
model
id model = 'SurrogateModel'
surrogate global
dace method pointer = 'DesignMethod'

experimental gaussian process
export model
filename prefix 'morris'
formats binary archive
export approx variance = 'dak gp variances.dat'

* Python binding

 Rewritten Gaussian process and
polynomial models

[4]:

import dakota.surrogates as daksurr

nugget_opts = {"estimate nugget": True}
trend_opts = {

"estimate trend": True,

"Options": {"max degree": 2}

by

config_opts = {
"kernel type": "squared exponential”,
"scaler name": "standardization",
“"Nugget": nugget_opts,
"num restarts": 15,
"Trend": trend_opts

}

gp = daksurr.GaussianProcess(xs, ys, config_opts)
gp_value = gp.value(ps)

gp_variance = gp.variance(ps)

gp_grad = gp.gradient(ps)

gp_hessian = [gp.hessian(p)[@, @] for p in ps]ﬂ

Examples Library

Dakota includes a large and growing collection of runnable examples

« Examples include
« Dakota inputs

* Drivers

* Jupyter notebooks
« (Case studies

« Tutorials

 (Consistent Presentation
* Routinely Tested
* |ncluded with Dakota downloads

« Soon to be a part of our unified
documentation

Summary

Import a Python module into Dakota to use a decorated function it contains as a driver

Description

This example combines use of the Dakota direct python callback interface together with use
of the dakota. interfacing Python module provided by Dakota to transparently convert
from the incoming Python dictionary to Parameters and Response objects native to

dakota. interfacing . This is done using an idiom supported in Python known as a decorator
factory. More specific details for both the direct python callback in Dakota and the
dakota.interfacing module can be found in the linked and di examples that are peers
to this one.

Driver

The main function of the direct Python callback driver driver.py is:

@di.python_interface()
def decorated_driver(params, results):

textbook_input = pack_textbook_parameters(params, results)
fns, grads, hessians = textbook_list(textbook_input)

results = pack_dakota_results(fns, grads, hessians, results)

return results

Prior to this snippet, the driver imports the dakota.interfacing module as di, and the
actual funxtion, gradient and hessian calculations are brought in from the textbook module.

The Python decorator is invoked by using the Python convention of the @ followed by the

0 1 On the horizon..

Dakota’s repositories will move to GitHub

* More easily explore and work with
Dakota source

« Create and track feature requests and
bug reports

« User support will move to GitHub
Discussions

Gitub

New Documentation System

dakota

)} DAKOTA
| oo |
B Using Dakota
Abaut Dakota

-\\I

Dakota Beginner's Tutorial
5 Examples
E] *Getting Started" Examples
Rosenbrack Test Prablem
1 Parameter Studies
4 Optimization

Uncertainty Quantification with Monte
Carta Samgling

Least Squares (Calibration}
Nondeterministic Anatysis
Hybrid Strategy
Video Rescurces.
Online Examples Repository
Offline Examples
‘Additional Examples
Coupling Dakota to a Simulation
Dakota Input File
Running Dakota

Dakota Output

Study Types

Rosenbrock Test Problem

The Rosenbrock function is a common test problem for Dakota examples. This
function has the form:

flz1, 23) = 100(zz — 23)® + (1 — =;)?

Shown below is a three-dimensional plot of this function, where both x1 and x2
range in value from =2 to 2; also shown below is a contour plot for Rosenbrock's
function.

- . 3

a
=

