

Sandia
National
Laboratories

Data-Driven Model-Form Uncertainty with Bayesian Statistics and Neural Differential Equations

Portone, T., Acuesta, E., Dandekar, R.,
Rackauckas, C.

ECCOMAS 2022, June 2022, Oslo, Norway

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Motivation: Develop an

- agile
- interpretable
- extrapolative

method to represent
model-form uncertainty
(MFU) for predictions

**Interpretable &
Extrapolative**

Rapid development

Oliver et al. 2015

???

Kennedy O'Hagan 2001

Sargsyan et al. 2015

Subramanian
Mahadevan 2019

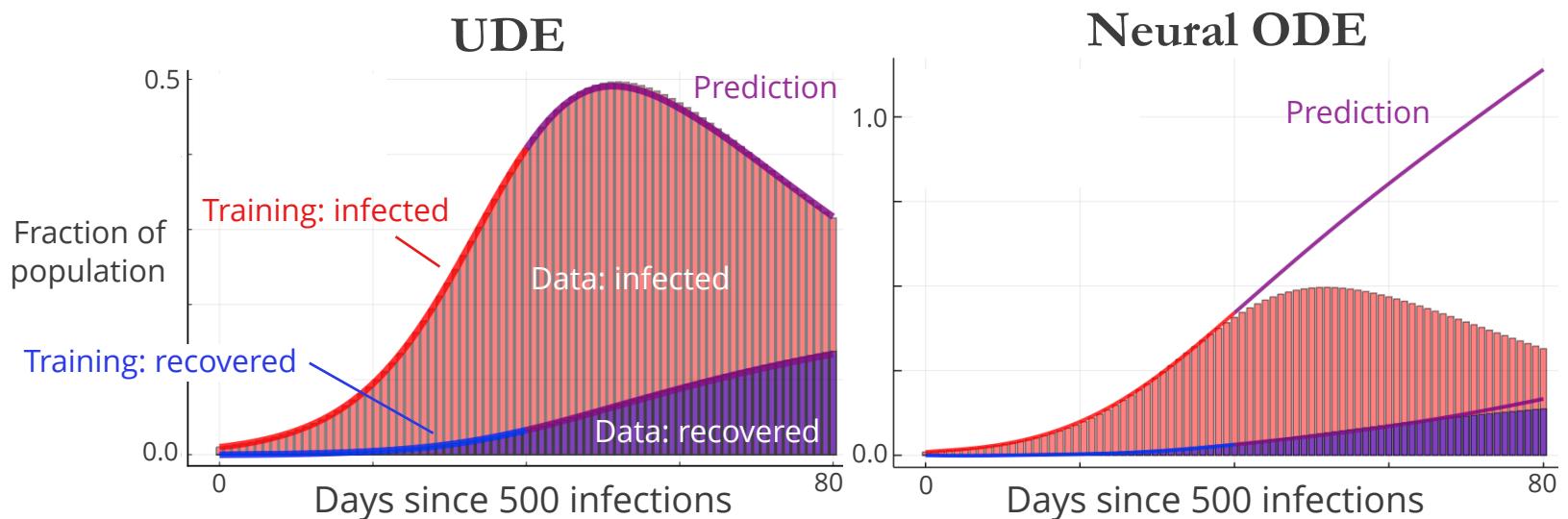
Idea: combine universal differential equations (UDEs) with Bayesian statistics to represent MFU

UDEs embed ML models, e.g. neural nets (NNs) within existing scientific models:

$$\begin{aligned}\mathbf{u}' &= F(\mathbf{u}, t, \text{NN}_\theta(\mathbf{u})) \\ \min_\theta \|\mathbf{d} - \mathbf{u}(\theta)\| &\end{aligned}$$

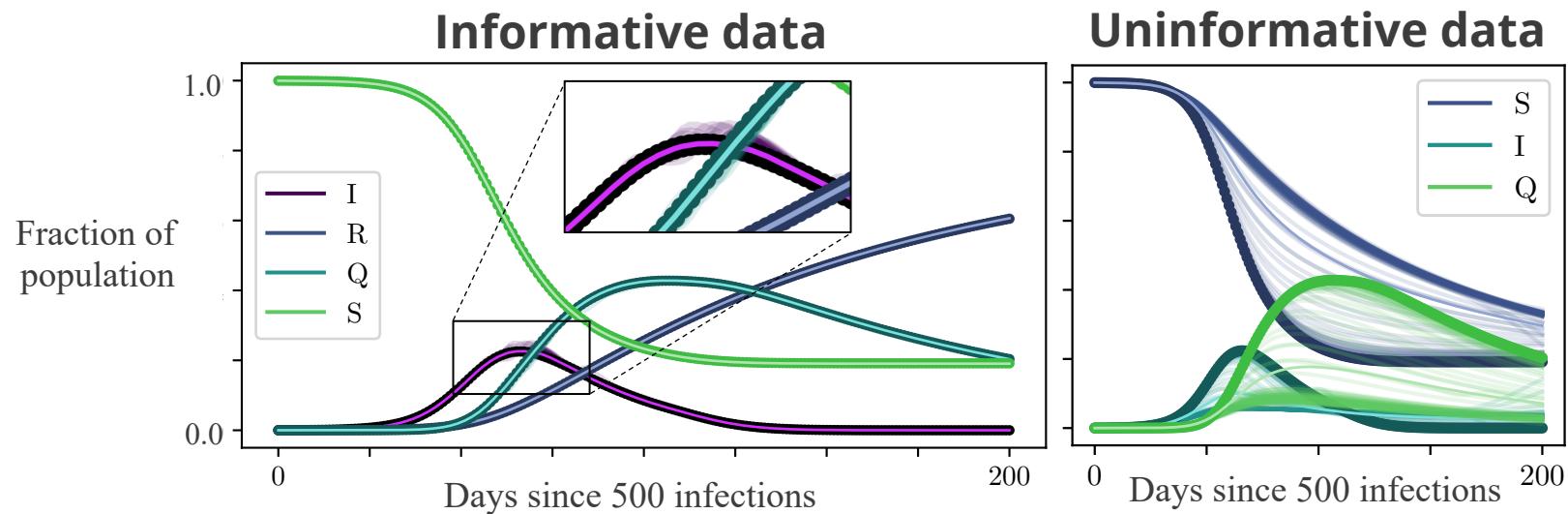
- Data driven, **BUT**
- Time-independent parameterization
- Can respect physical principles by construction
- Can be more predictive than Neural ODEs:

$$\mathbf{u}' = \text{NN}_\theta(\mathbf{u})$$



Idea: combine universal differential equations (UDEs) with Bayesian statistics to represent MFU

- UDEs used in a deterministic setting to find “model corrections” or “missing physics.”
- **Problem:** If data does not adequately inform the UDE, there is no single correction: the appropriate model form is uncertain.



By endowing the NN with a Bayesian parameterization, can we use them to represent model-form uncertainty?

Exemplar problem: compartment-based disease models

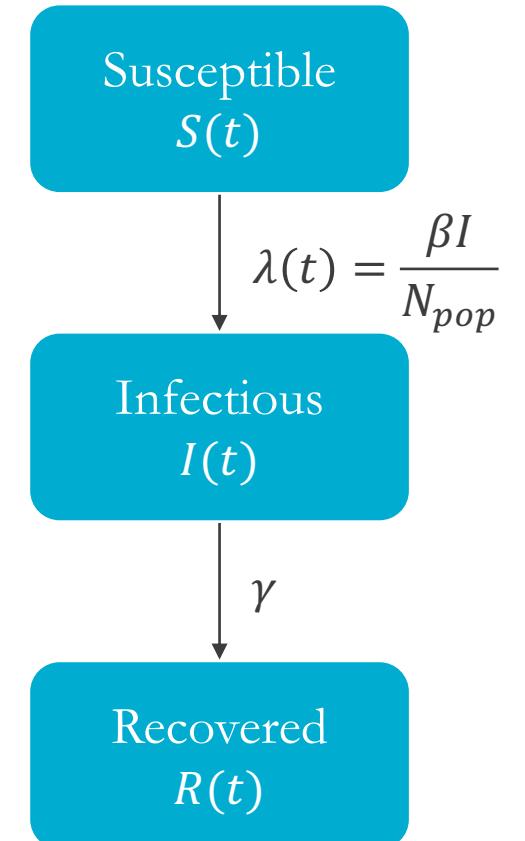
Let $N_{pop} = S(t) + I(t) + R(t)$.

$$\frac{dS}{dt} = -\frac{\beta IS}{N_{pop}}$$

$$\frac{dI}{dt} = \frac{\beta IS}{N_{pop}} - \gamma I$$

$$\frac{dR}{dt} = \gamma I$$

- SIR a common, simple model of disease spread.
- Doesn't account for infected population quarantine as we saw for COVID-19.
- Quarantine dynamics could depend nonlinearly on state variables.



Exemplar problem: compartment-based disease models

Let $N_{pop} = S(t) + I(t) + R(t) + Q(t)$.

$$\frac{dS}{dt} = -\frac{\beta IS}{N_{pop}}$$

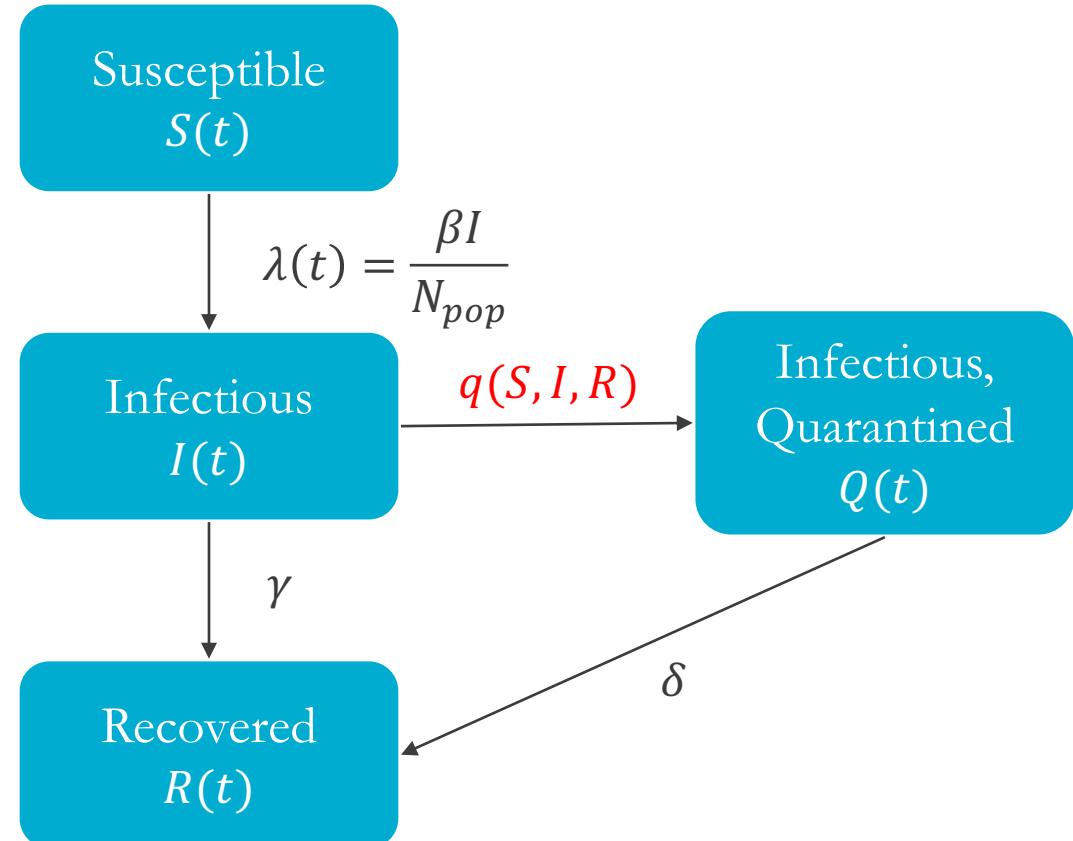
$$\frac{dI}{dt} = \frac{\beta IS}{N_{pop}} - \gamma I - q(S, I, R)I$$

$$\frac{dR}{dt} = \gamma I + \delta Q$$

$$\frac{dQ}{dt} = q(S, I, R)I - \delta Q$$

Represent nonlinear transition into quarantine with a small neural network.

Constrained to conserve population by construction.



Limitations of deterministic UDEs to address model-form uncertainty:

- Data not always informative enough to identify a single "model correction"
- There may not exist a deterministic model correction that depends only on modeled states

Idea: define a Bayesian probabilistic representation of NN parameterization to represent uncertainty in model form.

Challenges:

- NNs notoriously challenging to train even in deterministic setting.
- Traditional Bayesian methods computationally challenging & suffer from curse of dimensionality.

Are Bayesian UDEs a feasible approach to representing MFU?

Initially explored this question in the context of a Bayesian NN embedded in the SIRQ model.

Bayesian NN study

Inferring disease parameters $[\beta, \gamma, \delta]$ along with NN parameters

Prior

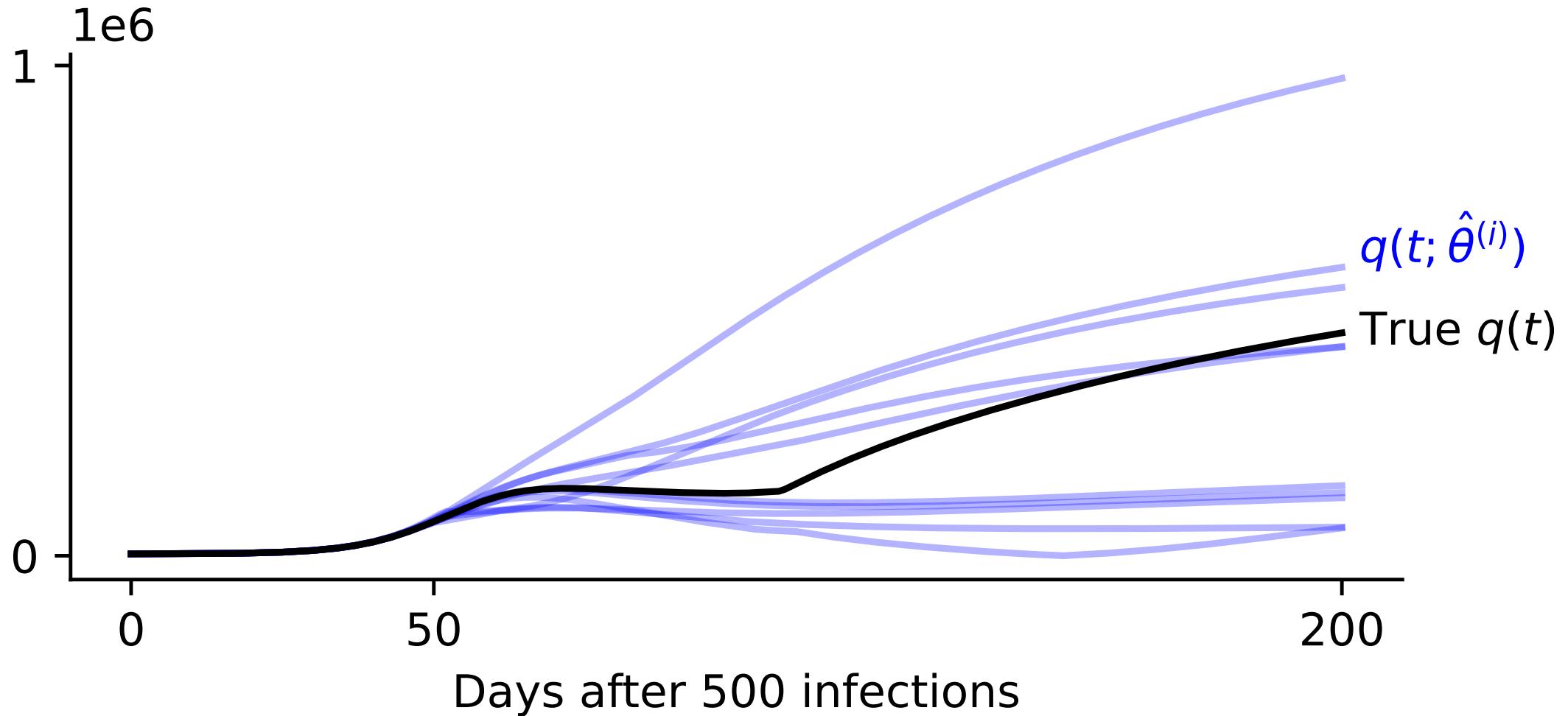
- Disease parameters $\sim U(0,2)$
- 51 NN parameters $\sim N(0, (50)^2)$
- **Likelihood**
- Synthetic data generated from SIRQ model
- Calibration data = observations of I, R, Q first 50 days after 500 infections.
- No noise added; likelihood assumes 95% confidence bound of $\pm 10\%$ error, i.e.

$$d = s + \epsilon, \quad \epsilon \sim N(0, \sigma^2), \quad 2\sigma = \pm 0.1s$$

Questions:

- Can we achieve agreement with calibration data using existing Bayesian methods?
- Can we extrapolate beyond calibration data time horizon?

MAP estimates differ by initial guess



Multiple parameter combinations reproduce calibration data.

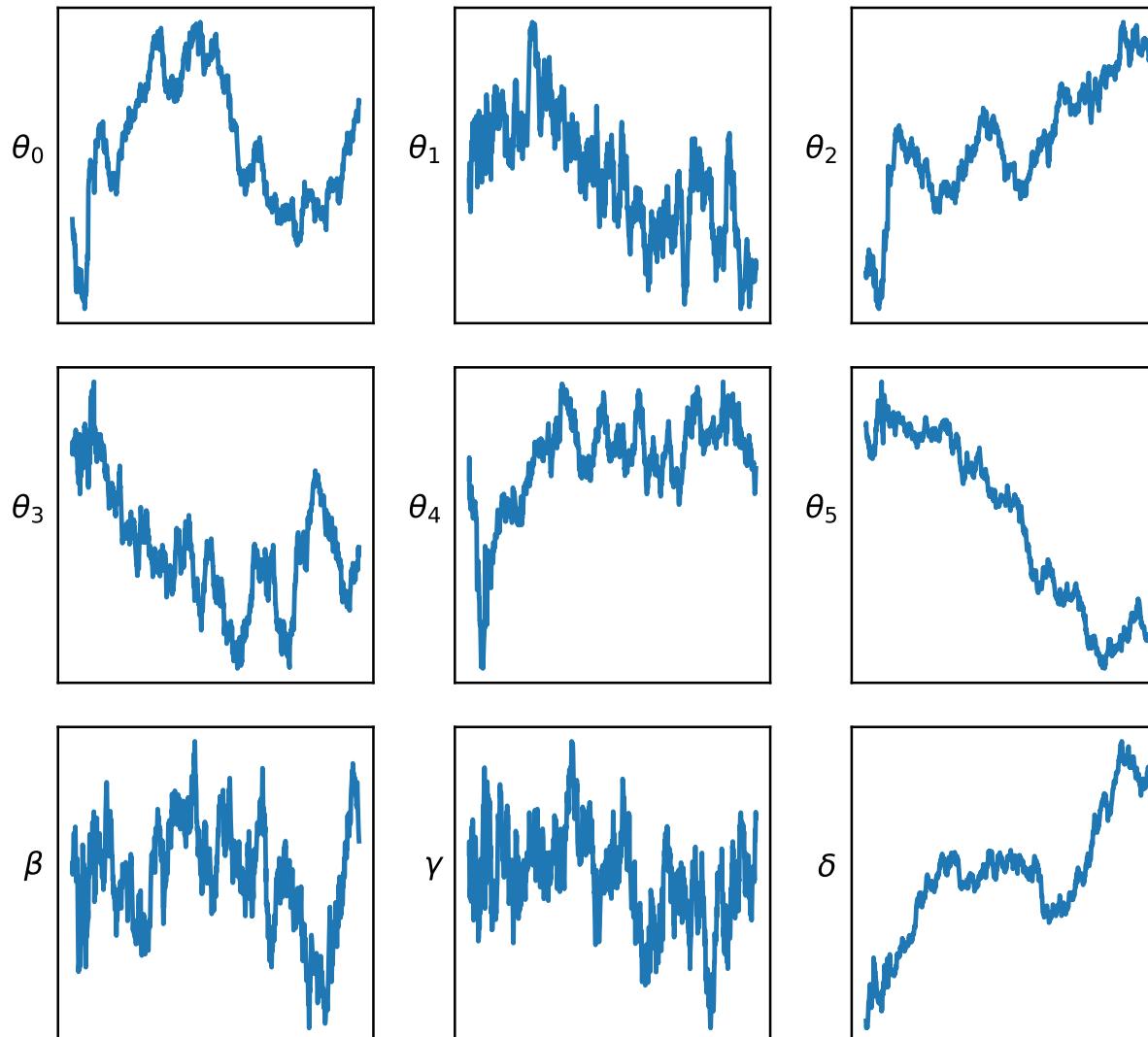
Seeded posterior approximations at best MAP point.

Methods:

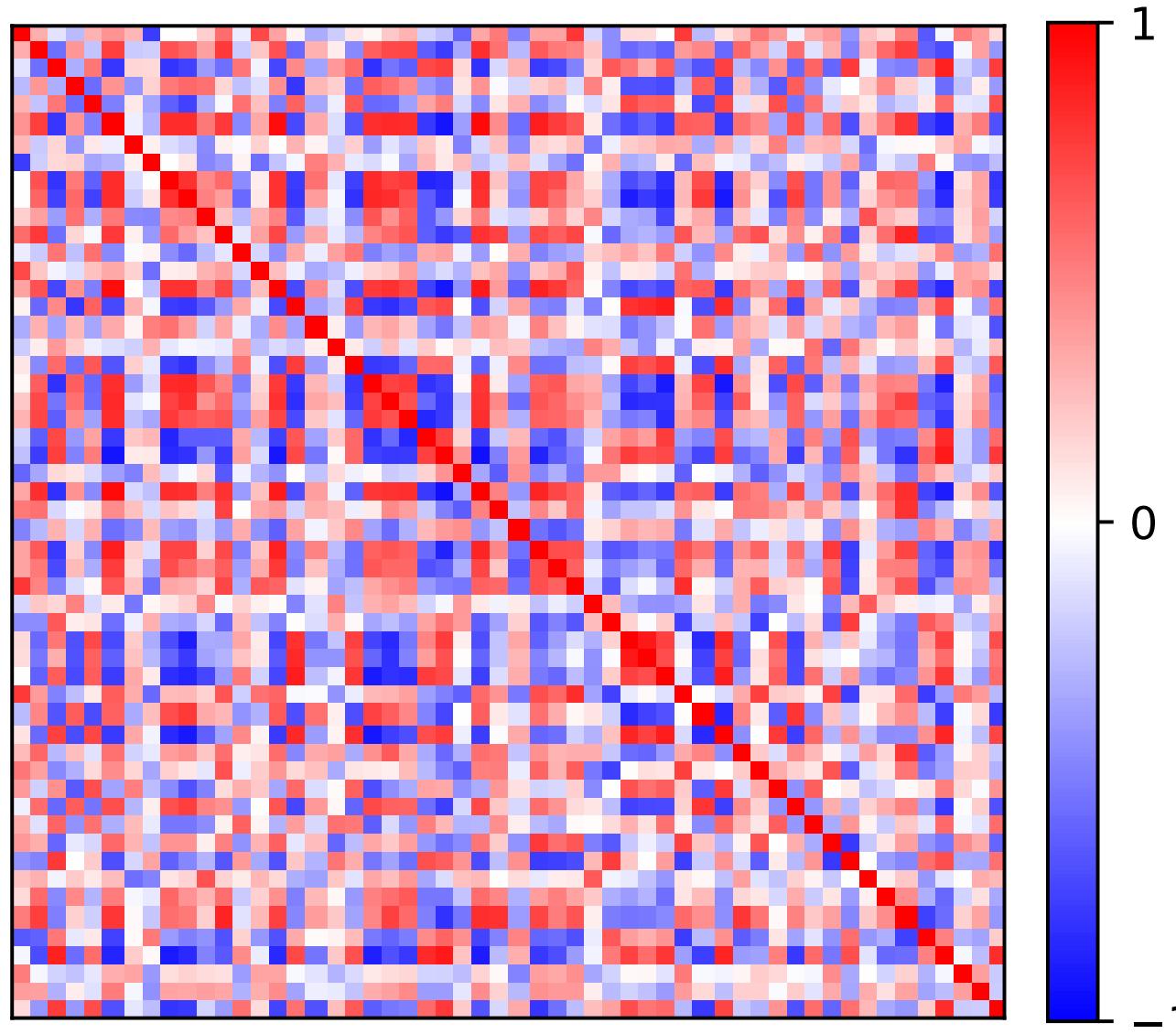
- NUTS
 - HMC variant, derivative based
- ADVI assuming posterior $N(\boldsymbol{\mu}, \text{diag}(\boldsymbol{\sigma}^2))$
 - derivative-based, variational inference

Even advanced MCMC algorithms struggle with BNN

NUTS posterior chains

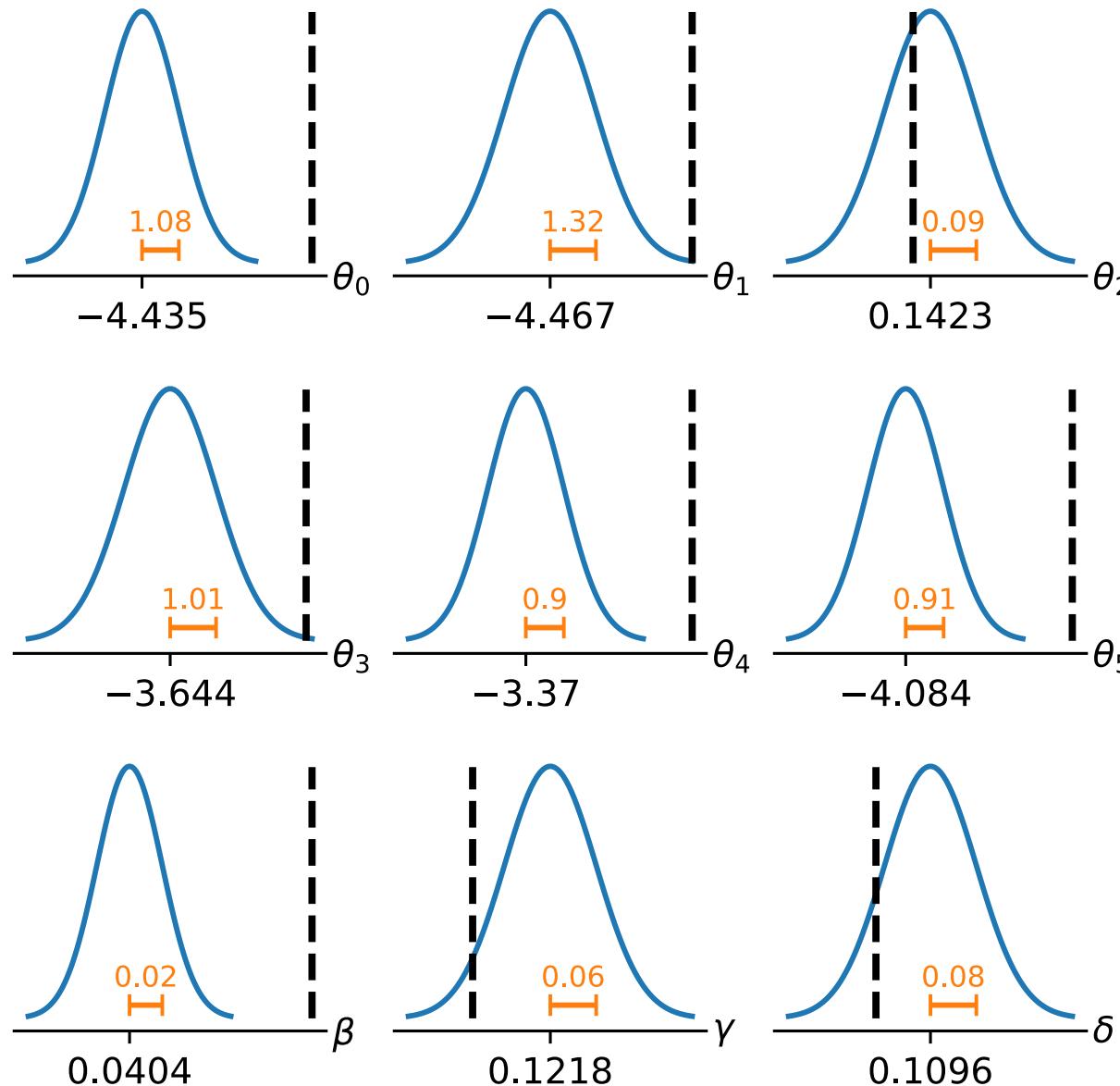


2000 steps
Average acceptance rate: 0.86
Adaptive step size



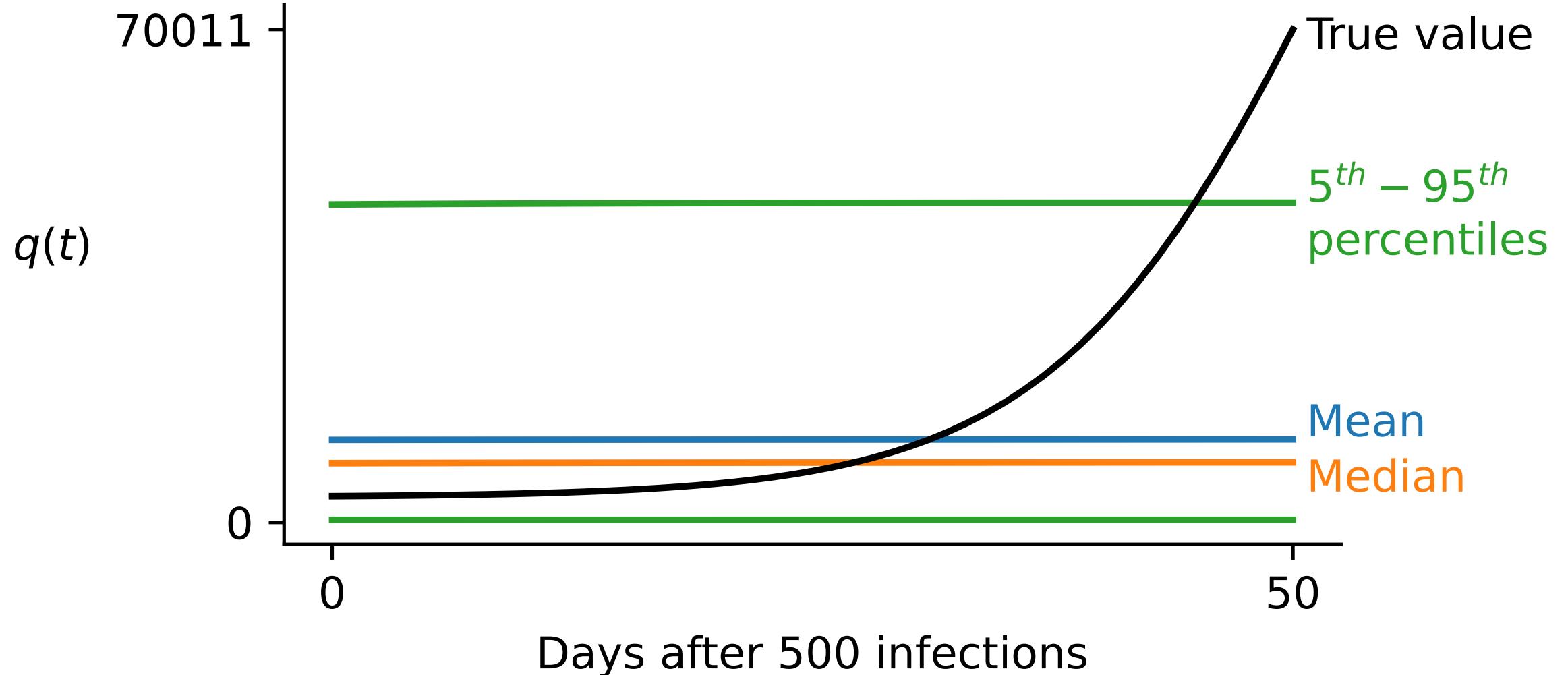
Performance with current ADVI specification even worse

Posterior
approximation
marginals

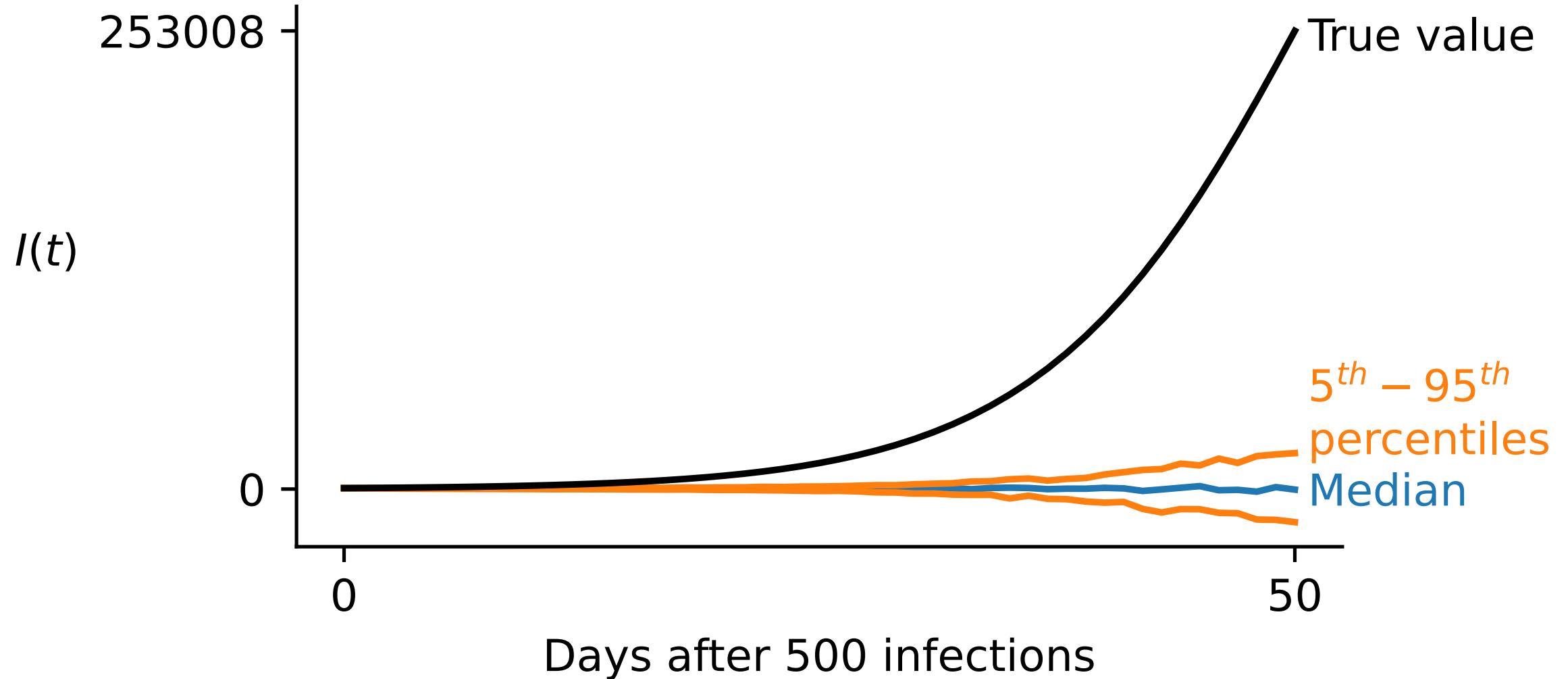


μ_0 = MAP estimate
 $\sigma_0 = 1$
 5000 iterations
 100 MC samples for ELBO

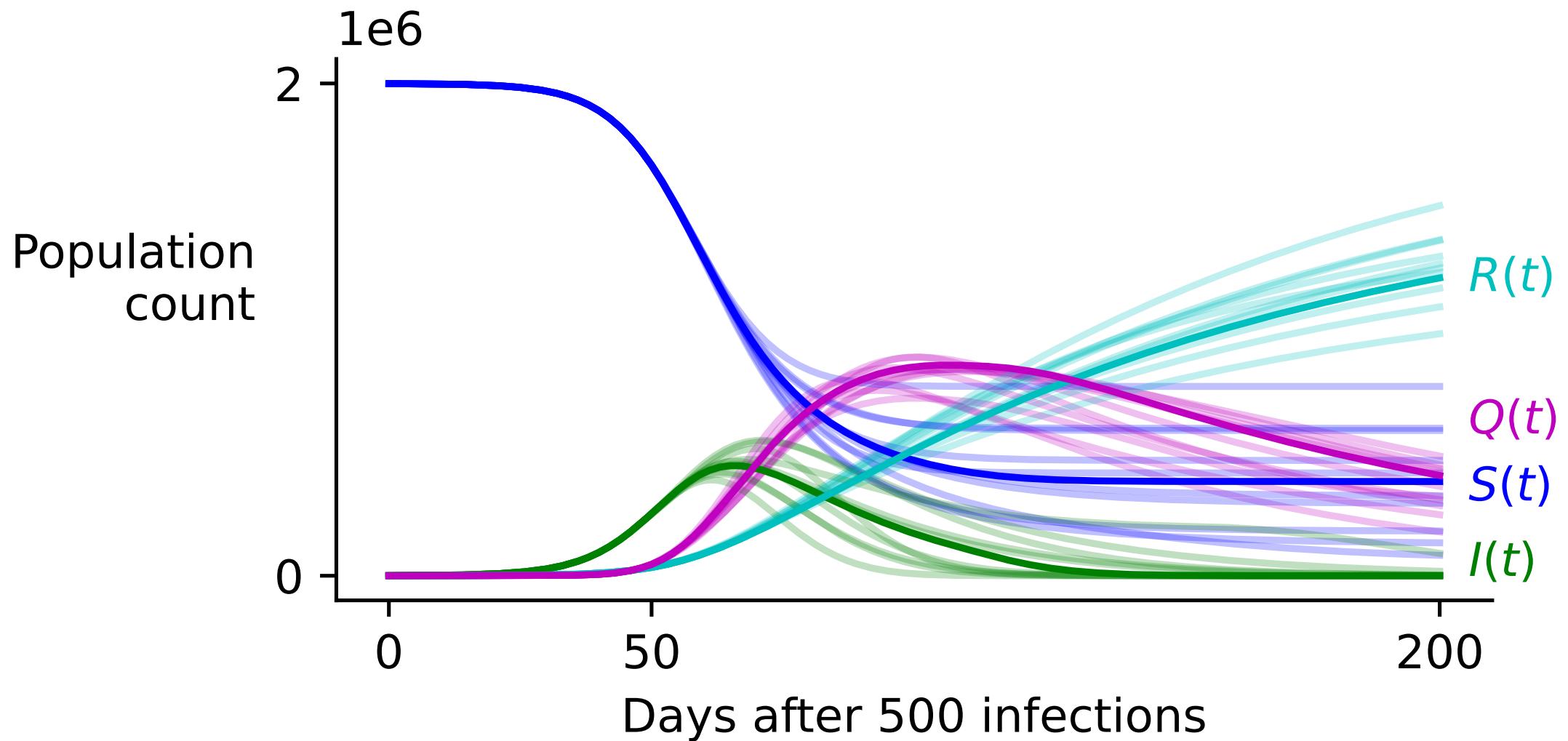
Performance with current ADVI specification even worse



Performance with current ADVI specification even worse



Ensemble of MAP estimates encompass truth



- Despite lower-d NN, Bayesian inference challenging.
- Posterior likely multimodal, non-Gaussian.
- Next steps:
 - Hierarchical model for BNN parameters
 - Estimate posterior with Gaussian mixture model
 - Goal-oriented Bayesian inference

teresaportone.com

SciML.ai

Turing.jl