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Motivation: Develop an

- agile
* interpretable
e extrapolative

method to represent
model-form uncertainty
(MFU) for predictions

Interpretable &
Extrapolative

Oliver et al. 2015

Rapid development

Kennedy O'Hagan 2001

Sargsyan et al. 2015

Subramanian
Mahadevan 2019




Idea: combine
universal differential

equations (UDEs) with
Bayesian statistics to
represent MFU

UDEs embed ML models, e.g. neural nets (NNs) within existing
scientific models:

u' = F(u,t,NNg(u))
meinlld —u(0)l

- Data driven, BUT
- Time-independent parameterization

« Can respect physical principles by construction

« Can be more predictive than Neural ODEs:

u = NNg(w)
UDE Neural ODE
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« UDEs used in a deterministic setting to find “model corrections” or
“missing physics.”

- Problem: If data does not adequately inform the UDE, there is no
single correction: the appropriate model form is uncertain.

, Informative data Uninformative data
Idea: combine Lo ]
universal differential
equations (UDEs) with
Bayesian statistics to Fraction of
represent MFU population
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By endowing the NN with a Bayesian parameterization, can we
use them to represent model-form uncertainty?




s | Exemplar problem: compartment-based disease models ﬁ

Let Nyyop = S(t) + 1(2) + R(2). as _ _PBIS
dt Npop Susceptible
NG

ar _ pIs ___
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« SIR a common, simple model of disease spread.

« Doesn't account for infected population quarantine Recovered

as we saw for COVID-19.

R(t)

i
dt - 1) |
|

« Quarantine dynamics could depend nonlinearly on
state variables. |



s | Exemplar problem: compartment-based disease models

Let Npop = S(t) +1(8) + R(t) + Q(¢).

Susceptible
s IS S5(t)
dt Nyop Bl
ar_Ppr (S, 1, R)I ror Infecti
dt  Npop e Infectious q(S,LLR) - ect1o.us,

1) d Quarantined
By 00
|4

0]
— =q(S,[LR)I -6 o
dt a( ) ¢ Recovered

R(t)

Represent nonlinear transition into quarantine with a
small neural network.

Constrained to conserve population by construction.




; | Bayesian UDEs

Limitations of deterministic UDEs to address model-form uncertainty:

- Data not always informative enough to identify a single "model

correction”
« There may not exist a deterministic model correction that depends

only on modeled states

Idea: define a Bayesian probabilistic representation of NN
parameterization to represent uncertainty in model form.




s | Bayesian UDEs

Challenges:
* NNs notoriously challenging to train even in deterministic setting.

- Traditional Bayesian methods computationally challenging & suffer
from curse of dimensionality.

Are Bayesian UDEs a feasible approach to representing MFU?

Initially explored this question in the context of a Bayesian NN
embedded in the SIRQ model.




Inferring disease parameters [B,y, 8] along with NN parameters

Prior

« Disease parameters ~ U(0,2)

51 NN parameters ~ N(0, (50)?2)

Likelihood

Synthetic data generated from SIRQ model

Calibration data = observations of I, R, Q first 50 days after 500 infections.

I
o | Bayesian NN study m
I

No noise added: likelihood assumes 95% confidence bound of +10% error, i.e.

d=s+e¢, e ~N(0,0%), 20 = +0.1s



Questions:

- Can we achieve agreement with calibration data using existing
Bayesian methods?

- Can we extrapolate beyond calibration data time horizon?

I
0 1 Bayesian NN study m
I



1 I MAP estimates differ by initial guess
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Multiple parameter combinations reproduce calibration data. i



> | Posterior approximation

Seeded posterior approximations at best MAP point.

Methods:

« NUTS
« HMC variant, derivative based

- ADVI assuming posterior N (u, diag(az))

« derivative-based, variational inference




i3 1 Even advanced MCMC algorithms struggle with BNN @

NUTS posterior chains

2000 steps
Average acceptance rate: 0.86
Adaptive step size
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14 ‘ Correlations indicate complex posterior structure



s | Performance with current ADVI specification even worse @!
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s | Performance with current ADVI specification even worse @!
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7 1 Performance with current ADVI specification even worse @!
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e | Ensemble of MAP estimates encompass truth
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19 I Conclusions and future work

 Despite lower-d NN, Bayesian inference challenging.

 Posterior likely multimodal, non-Gaussian.

* Next steps:
 Hierarchical model for BNN parameters
* Estimate posterior with Gaussian mixture model

» Goal-oriented Bayesian inference
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