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Interpretable & 
Extrapolative

Rapid development

Motivation: Develop an

• agile
• interpretable
• extrapolative

method to represent 
model-form uncertainty 
(MFU) for predictions
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Idea: combine 
universal differential 
equations (UDEs) with 
Bayesian statistics to 
represent MFU

UDEs embed ML models, e.g. neural nets (NNs) within existing 
scientific models:

𝒖! = 𝐹 𝒖, 𝑡, 𝑁𝑁" 𝒖
min
"

𝒅 − 𝒖(𝜃)

• Data driven, BUT

• Time-independent parameterization

• Can respect physical principles by construction

• Can be more predictive than Neural ODEs:
𝒖! = 𝑁𝑁" 𝒖
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Idea: combine 
universal differential 
equations (UDEs) with 
Bayesian statistics to 
represent MFU

• UDEs used in a deterministic setting to find “model corrections” or 
“missing physics.”

• Problem: If data does not adequately inform the UDE, there is no 
single correction: the appropriate model form is uncertain.

By endowing the NN with a Bayesian parameterization, can we 
use them to represent model-form uncertainty?
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Exemplar problem: compartment-based disease models5

Let 𝑁!"! = 𝑆 𝑡 + 𝐼 𝑡 + 𝑅 𝑡 . 𝑑𝑆
𝑑𝑡

= −
𝛽𝐼𝑆
𝑁!"!

𝑑𝐼
𝑑𝑡
=
𝛽𝐼𝑆
𝑁!"!

− 𝛾𝐼

𝑑𝑅
𝑑𝑡

= 𝛾𝐼

Susceptible
𝑆(𝑡)

Infectious
𝐼(𝑡)

Recovered
𝑅(𝑡)

𝛾

𝜆 𝑡 =
𝛽𝐼
𝑁#$#

• SIR a common, simple model of disease spread.

• Doesn’t account for infected population quarantine 
as we saw for COVID-19.

• Quarantine dynamics could depend nonlinearly on 
state variables.



Exemplar problem: compartment-based disease models6

Let 𝑁!"! = 𝑆 𝑡 + 𝐼 𝑡 + 𝑅 𝑡 + 𝑄 𝑡 .

𝑑𝑆
𝑑𝑡 = −

𝛽𝐼𝑆
𝑁#$#

𝑑𝐼
𝑑𝑡 =

𝛽𝐼𝑆
𝑁#$#

− 𝛾𝐼 − 𝑞 𝑆, 𝐼, 𝑅 𝐼

𝑑𝑅
𝑑𝑡 = 𝛾𝐼 + 𝛿𝑄
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Represent nonlinear transition into quarantine with a 
small neural network. 

Constrained to conserve population by construction.



Bayesian UDEs

Limitations of deterministic UDEs to address model-form uncertainty:

• Data not always informative enough to identify a single ”model 
correction”

• There may not exist a deterministic model correction that depends 
only on modeled states

Idea: define a Bayesian probabilistic representation of NN 
parameterization to represent uncertainty in model form.
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Bayesian UDEs

Challenges:

• NNs notoriously challenging to train even in deterministic setting.

• Traditional Bayesian methods computationally challenging & suffer 
from curse of dimensionality.

Are Bayesian UDEs a feasible approach to representing MFU?

Initially explored this question in the context of a Bayesian NN 
embedded in the SIRQ model.
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Bayesian NN study

Inferring disease parameters [𝛽, 𝛾, 𝛿] along with NN parameters

Prior

• Disease parameters ~ 𝑈(0,2)

• 51 NN parameters ~ 𝑁 0, 50 #

• Likelihood

• Synthetic data generated from SIRQ model

• Calibration data = observations of 𝐼, 𝑅, 𝑄 first 50 days after 500 infections.

• No noise added; likelihood assumes 95% confidence bound of ±10% error, i.e.

𝑑 = 𝑠 + 𝜖, 𝜖 ∼ 𝑁 0, 𝜎# , 2𝜎 = ±0.1𝑠
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Bayesian NN study

Questions:

• Can we achieve agreement with calibration data using existing 
Bayesian methods? 

• Can we extrapolate beyond calibration data time horizon?
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MAP estimates differ by initial guess11

Multiple parameter combinations reproduce calibration data.



Posterior approximation

Seeded posterior approximations at best MAP point.

Methods:

• NUTS 
• HMC variant, derivative based

• ADVI assuming posterior 𝑁 𝝁, diag 𝝈𝟐

• derivative-based, variational inference
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Even advanced MCMC algorithms struggle with BNN13

NUTS posterior chains

2000 steps
Average acceptance rate: 0.86
Adaptive step size



Correlations indicate complex posterior structure14



Performance with current ADVI specification even worse15

𝜇! = MAP estimate
𝜎! = 1
5000 iterations
100 MC samples for ELBO

Posterior 
approximation 

marginals



Performance with current ADVI specification even worse16



Performance with current ADVI specification even worse17



Ensemble of MAP estimates encompass truth18



Conclusions and future work

• Despite lower-d NN, Bayesian inference challenging.

• Posterior likely multimodal, non-Gaussian.

• Next steps:
• Hierarchical model for BNN parameters
• Estimate posterior with Gaussian mixture model
• Goal-oriented Bayesian inference
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