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The P2D Model For Lithium-ion Batteries
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The P2D Li-ion Battery Model

 Coupled Conservation Laws :

Electronic Charge : Overall Charge :
RS _ . _ _
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Computational Complexity has spurred active investigation of different simplification and reformulation

techniques

[J. S. Newman+, (1993-2012)]



The Single Particle Model

Discharge
Load
C.=Const.
> ——O—>
Electrolyte
Negative Positive
electrode electrode

R; : Radius of the electrode
C,(r): Solid phase concentration of Li in the electrode
Cs,; : Solid phase concentration of Li at the surface of the electrode

i : n (Negative) or p (Positive)

Ref. Al-Gabalawy+, Batteries, 2020
)



The Single Particle Model

Neglect Electrolyte Effects:

* Features
o, 1 0 ( , . 0c )  Large reduction in number of
== r'D — equations compared to P2D
ot r” or or
= * Neglects potential and
‘ concentration variations in
x=, x=h electrolyte
0 j c, dx 0 _[ c, dx « Applicable in low to moderate C
x=0 _10 P25 —x=0 rates where polarization is not
ot r’ or Loor significant
‘  Poor low temperature
performance due to sluggish
— — kinetics causing higher
8cf 1 0 Y 5Cf polarization

Restricted to moderate current scenarios, where liquid phase polarizations aren’t significant



Lithium-ion Battery as Tanks in Series

oy =0 b

Can we incorporate average electrolyte dynamics by a similar volume-averaging approach?



Generating the Tank Model

Example Conservation Equation in Electrolyte

j cdl’
Cl
acl aNl 0 . J;/ (& dl
&1, T | al(l_t+)]l 4
81‘ ax dl" = Adx
Volume averaging involves integrating the variable w.r.t the volume of the region
djr slcldV 8N
: 1 dV +| al-t )jdV
dt 1 1




Approximating Interfacial Fluxes

i : b ac AC C__ C =
I : Nl,x:il - _D(Cl,,\‘zll )glJl —L ~ D(cl ) [ J D(Cl ) )Ebl ! ’1 I
: : ax ]-:ll C 1‘13 _1
: A 5
| 01,12 02,12 Va
— E Vieey | L~ -
' Voreh ) ) —c,+e,
V1 / Zr=h N, - =-D(c, . z)gbﬁ ai ~D(c, ., )85,2 Ac, _D(e, ., )g; Cy+ €y
: 1 OX - b (53,13 1 ]_
| ! .
I : Cy+Choy

b
D(Cl,x:ll e

2 1_2 ’
\ 2 y,

Naive assumptions of ‘film thickness’, can be regarded an adjustable parameter




Extensions to Thermal Effects

T
CQ
q(” jf‘ll = i(q;}n —_—
G 9.
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q33 qg'mh

Apply methodology for Energy Conservation equations

[A. Subramaniam+, JES,2020] 10



Generating the Thermal Tank Model

Conservation Equation:

ol &g ou(c>™) . 0¢, . 04,
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Solid Electrolyte Interphase (SEI) Layer

Lithium @

Lithium

Graphite \
Intercalatlon\ New SEI
o Electrons g

(c Formation of a passivation layer on the surface of the anode particle.

* Electrolyte solvent is reduced at the surface with Li* ions and electrons.
 The SEI layer grows due to diffusion through the SEI, increased surface
area, plating, transition metal deposition, etc. )

2C3H4 05 (I)+2e” +2Li" = (CH,0CO,Li), (s)+CyHy (g)

Image reproduced from M. B. Pinson and M. Z. Bazant, J. Electrochem. Soc., 160, 2-9 (2013). 12



Modeling the SEI Layer

Growth of the SEI Layer: ,+” SEl Layer .
ds, (1) _ 1 (DM :,' \‘
dt 2Fpg &y

Graphite Particle imaindt)

SEI Kinetics (Tafel Equation) :
: —Ea - F Sepr (D1, (1) ‘\‘
I () = kSEIcECeXp|:R (T-T )] eXp|: R?;I (d)n — ¢ = Uggr — = - = ] ‘.
ref SEI b

~
~ -
“h.‘ "
_______

Overpotential

iapp (t) = iint (t) + iS]-II (t)
« Assumptions

(
Note: h * Uniform thickness of SEIl layer
ssar(1) s the resistance from the SEI « SEl is made of a single
Ky, layer. component
\_ Yy, « Same mechanism of formation

across a large temperature range
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Simulation Results

« Simulation protocol for 1 cycle
« 1C CC-CV Charge till 4.2V
 1C Discharge till 2.8V

* LiCoO, — Graphite chemistry
 Parameter values taken from literature
Electrode and Separator - Northrop et al. (2011)
Electrolyte - Valgen and Reimers (2005)

e Thermal Tanks-In-Series used to simulate at an ambient
temperate of

« 25°C
 -10°C
 45°C

e Cellis Isothermal

14



Effects of T,

Anode Temperature at Different T__ (EOCV) Anode Temperature at Different T__ (EOD)
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No temperature increase during discharge in Isothermal case
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Capacity loss due to SEI layer

. Capacity loss at different temperatures
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Higher fade at higher temperature due to kinetic favorability of fade reaction.

Reactions are sluggish at low temperature

*Capacity fade is only due to SEI layer formation. Other mechanisms are not considered in this study
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Charging times at different T

~ CC and CV Charge Times Total Charge Times
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CC charging time reduces with cycling for higher temperatures as cut off voltage is reached at lower SOC values

Low temperature charging times are always higher due to sluggish kinetics, SOC at end of charging is relatively
unchanged with cycling

*Capacity fade is only due to SEI layer formation. Other mechanisms are not considered in this study 17



Anode overpotentials

§ 10_3Anode Overpotential at different T__ (EOD)
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Anode overpotential decreases at high temperatures at higher temperatures, due to increase in SEIl resistance
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