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~ ECP Supercontainers activity as Packaging Technologies
7

» Ensure container runtimes will be scalable, interoperable, and well integrated across DOE
— Enable container deployments from laptops to Exascale

— Assist Exascale applications and facilities leverage containers most efficiently

rd

» Three-fold approach -—--".‘;“\
— Scalable R&D activities I:
— Collaboration with related ST and AD projects E\(\; )
— Training, Education, and Support EXASCALE COMPUTING PROJECT
 Activities conducted in the context of interoperability “

— Portable solutions

« Optimized E4S container images for each machine type | |
» Containerized ECP that runs on Astra, A21, El-Capitan, ...

— Work for multiple container implementations SUPERCONTAINERS
 Not picking a “winning” container runtime

— Multiple DOE facilities at multiple scales




Portability Performance

How do we strike the right balance?

» Portable container images can be moved form Performant container images can run at near-
one resource deployment to another with ease native performance compared to natively build
applications
» Reproducibility is possible
— Everything (minus kernel) is self-contained Requires targeted builds for custom hardware

— Traceability is possible via build manuscripts — Specialized interconnect optimizations
— No image modifications — Vendor-proprietary software

 Performance can suffer — no optimizations Host libraries are mounted into containers
— Can't build for AVX512 and run on Haswell — Load system MPI library (glibc issues!?)

— Unable to leverage latest GPU drivers — Match accelerator libs to host driver

Not portable across multiple systems ‘




//HPC Container Runtimes today

/e Docker is not good fit for running HPC workloads
/ 8 g
74 — Building with Docker on my laptop is ok!

— Deployment issues: Security, scheduler integration, etc
» Several different container runtime options in HPC

¢ A

SHIFTER apptainererg Charliecloud
 All our HPC container runtimes are usable in HPC today

« Each runtime offers different designs and OS mechanisms
— Storage & mgmt of images

— User, PID, Mount namespaces
— Security models
— Image signing, validation, registries, etc

* New tools emerging for rootless container builds as well!

Churlie%



/7 Supercontainers investments in HPC container runtimes
7

e multi-stage unprivileged build (0.19) * |nitial scalable container launch for Perlmutter

‘4

e

. fgglodistribution tools into thinking they're privileged
(0.20)

e push to image repositories (0.22)

e Further integration with Podman being explored

SHIFTER

» Bugfixes and registry compatibility upgrades
e architecture-aware pull (0.24) Charliecloud

e automatically make SSH secrets available to build (0.25)

* mount SquashFS images at runtime using FUSE (0.26, \ « Developing MOU Red Hat with DOE labs

upcoming)

Rootless Podman builds on HPC login nodes
Singularity => Apptainer

Enabling SIF image support (Singularity compatibility)

* HPCng project renamed to Apptainer Investigating scalable launch of OCl images

- Leveraging Shifter’s squashfs experience

« Managing ongoing fork issues in community

 Security fixes and bugfixes ongoing Native overlay support

O

SUPERCONTAINERS
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— Theta: Singularity

— Aurora: Singularity

fs\ OLCF
— Summit: Singularity (trial)
— Frontier: Singularity

— Cori: Shifter
— Perlmutter: Shifter & Podman
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Container runtimes on different DOE systems

— Sierra/Lassen: Singularity (trial)

— Linux clusters: Singularity
— El Capitan: Singularity & Podman

O LANL

Charliecloud — Trinity: Charliecloud

— Linux clusters: Charliecloud
— Crossroads: Charliecloud

rs\ Sandia

— Astra: Singularity, Charliecloud, &
& Podman

Charlecioud — Linux clusters: Singularity & Podman

Many sites are rolling out container runtimes for users.

We are developing resources to facilitate consistent, performant deployment across sites.

But what about building containers for HPC??




4 Podman & Charliecloud

/"« Podman/Buildah provide container build functionality
through low privilege
— UID/GID mappers with shadow-utils

— Overlay & FUSE for mount operations

 Charliecloud for fully unprivileged build with single
UID/GID mapping to UIDO

— Simpler setup, remains entirely unprivileged
- Requires fakeroot injection in container

» Both implementations prototyped and working

e Next Steps
— Enable E4S container builds directly on DOE/ECP resources

— Integrate with Cl activities & DevOps

» Able to work with facilities to help roll out new capability

//Supercontainers created two HPC build solutions:

= M :
salloc -N SNP && mpirun -np $NP singularity
exec eds-1.2.4.sif /fapp

docker://gitlab.doe.gov/eds/edsecp:1.2.4

OCl Image Registry “

podman push gitlab.doe.gov/eds/edsecp:1.2.4

podman build -t “gitlab.doe.gov/eds/edsecp:1.2.4" .
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/" New taxonomy of container privilege levels

type namespaces setup IDs in container examples

UIDs and GIDs *dOCer CSJ

I mount privileged : =

shared with host ,1’ PO dman h

mount arbitrary UIDs and GIDs (_S/ & docker
II + prl\nleged Separate from host = HPC-focused

privileged user (but pitfalls) £ podman

mount

- host EUID & EGID aliased '

1T + unprwﬂegEd (supplemental GIDs partially functional) oo° 2 podman

unprivileged user

only Type III containers are fully unprivileged throughout the container lifetime

host
root 0
bin 1
host alice mm
bob 1001
65505
65,536
reserved 00
for Alice

265,535 | €«—»
265,536

reserved
for Bob EI

365,536

=

container
0
1

65,536
65,537

” Supercontainers team leading container build technologies

Jetc/subuid
alice:200000:65536
bob:300000:65536

Jproc/selffuidmap
1000 1
1 200000 65536

Example of Type Il user namespace mapping

used by container runtimes

From: Reid Priedhorsky, Shane Canon, Tim Randles, and Andrew Younge, Minimizing privilege for building HPC containers, in SC '21:
Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, Nov 2021.
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Many DOE codes use Gitlab for developing HPC applications

Need to leverage Continuous Development and Continuous
Integration capabilities
« {build test,deploy} HPC apps in containers

« Automatic building container images

Gitlab Cl has git-lab runners, but expect elevated privileges

Solution: Podman-in-Podman
« The gitlab runner built in a OCI container image

« Run Rootless Podman to have gitlab-runner think it has root privs
 Gitlab-runner auto-starts a container build within the 1st container
« Push resulting container to Gitlab container registry

Simplified container build & deploy infrastructure with Gitlab

Solution appliable to SNL as well as greater DOE infrastructure
« Future integration with DOE Jacamar runners

/" Podman - in - Podman for containerized Ci

G = t I | Container registry




// Extreme-scale Scientific Software Stack (E4S)

@ Spack

/4

74  E4S: HPC Software Ecosystem — a curated software portfolio

» A Spack-based distribution of software tested for interoperability
and portability to multiple architectures

* Available from source, containers, cloud, binary caches
» Leverages and enhances SDK interoperability thrust
* Not a commercial product — an open resource for all

e E4S over time:

Oct 2018:

Jan 2019:

Nov 2019:

E4S 0.1

E4S 0.2

E4S1.0

24 full, 24 partial release products
37 full, 10 partial release products

50 full, 5 partial release products

https://e4s.io

Feb 2020: E4S 1.1 61 full release products
Nov 2020: E4S 20.10 67 full release products Lead - Sa m ee r S h e n d e
* Feb 2021: E4S 21.02 67 full release, 4 partial release (U Oregon)
e May 2021: E4S 21.05 76 full release products .
Y P Also include other products .e.g.,
— Aug 2021: E4S 21.08 88 full release products

Al: PyTorch, TensorFlow (CUDA, ROCm)

- Nov2021:  E4S21.11 Co-Design: AMReX, Cabana, MFEM

91 full release products



https://e4s.io
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/" 0ur strategy is to focus on Exascale systems
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We aim to leverage the new containerized PE to enable Cl for these environments.
— We are experimenting with containerized builds for the Cray environment

We have worked with HPE/Cray to enable Spack to autodetect PE components
— Metadata for Spack now ships with the PE itself, can be automatically used via spack install --reuse

GPU integration across the stack will be an ongoing focus
— We are improving our compiler and GPU support model - compiler interoperability is a major focus

We aim to have a distribution of optimized Spack binaries for these systems by the end of
ECP

— Spack will work on Exascale systems out of the box

We will also have optimized container images that can use these binaries
— Users will be able to construct images from E4S packages on demand, run optimized on exascale machines




