Thislpaperidescribeslobiectiveftechnicallresultslandlanalysis JAnvisubiective views or opinions that might be expressed in SAND2022-7225C

helpaperfdojnotlnecessarilyfrepresentfthejviewsjofftheju.S | of Energy or the United States Government.

Sandia
National
Laboratories

Exceptional service in the national interest

Building and Running HPC Containers
across the US Department of Energy

Andrew Younge

Center for Computing Research
Sandia National Laboratories

International Supercomputing Conference 2022

SAND2022-7213 C
Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and

UNCLASSIFIED UN Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S.
Sandla Natlonal Laboratorle islafmultimission laboratory managed and operated by National-Technologvi&-Engineering:Solutions, of Sandia,, LLC 1a whollyiowned
subsidiaryJoflJHoneywelljinternational,Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525." ™" ation under contract DE-NAO0O03525.

mailto:ajyoung@sandia.gov

~ ECP Supercontainers activity as Packaging Technologies
7

» Ensure container runtimes will be scalable, interoperable, and well integrated across DOE
— Enable container deployments from laptops to Exascale

— Assist Exascale applications and facilities leverage containers most efficiently

rd

» Three-fold approach -—--".‘;“\
— Scalable R&D activities I:
— Collaboration with related ST and AD projects E\(\;)
— Training, Education, and Support EXASCALE COMPUTING PROJECT
 Activities conducted in the context of interoperability “

— Portable solutions

« Optimized E4S container images for each machine type | |
» Containerized ECP that runs on Astra, A21, El-Capitan, ...

— Work for multiple container implementations SUPERCONTAINERS
 Not picking a “winning” container runtime

— Multiple DOE facilities at multiple scales

Portability Performance

How do we strike the right balance?

» Portable container images can be moved form Performant container images can run at near-
one resource deployment to another with ease native performance compared to natively build
applications
» Reproducibility is possible
— Everything (minus kernel) is self-contained Requires targeted builds for custom hardware

— Traceability is possible via build manuscripts — Specialized interconnect optimizations
— No image modifications — Vendor-proprietary software

 Performance can suffer — no optimizations Host libraries are mounted into containers
— Can't build for AVX512 and run on Haswell — Load system MPI library (glibc issues!?)

— Unable to leverage latest GPU drivers — Match accelerator libs to host driver

Not portable across multiple systems ‘

//HPC Container Runtimes today

/e Docker is not good fit for running HPC workloads
/ 8 g
74 — Building with Docker on my laptop is ok!

— Deployment issues: Security, scheduler integration, etc
» Several different container runtime options in HPC

¢ A

SHIFTER apptainererg Charliecloud
 All our HPC container runtimes are usable in HPC today

« Each runtime offers different designs and OS mechanisms
— Storage & mgmt of images

— User, PID, Mount namespaces
— Security models
— Image signing, validation, registries, etc

* New tools emerging for rootless container builds as well!

Churlie%

/7 Supercontainers investments in HPC container runtimes
7

e multi-stage unprivileged build (0.19) * |nitial scalable container launch for Perlmutter

‘4

e

. fgglodistribution tools into thinking they're privileged
(0.20)

e push to image repositories (0.22)

e Further integration with Podman being explored

SHIFTER

» Bugfixes and registry compatibility upgrades
e architecture-aware pull (0.24) Charliecloud

e automatically make SSH secrets available to build (0.25)

* mount SquashFS images at runtime using FUSE (0.26, \ « Developing MOU Red Hat with DOE labs

upcoming)

Rootless Podman builds on HPC login nodes
Singularity => Apptainer

Enabling SIF image support (Singularity compatibility)

* HPCng project renamed to Apptainer Investigating scalable launch of OCl images

- Leveraging Shifter’s squashfs experience

« Managing ongoing fork issues in community

 Security fixes and bugfixes ongoing Native overlay support

O

SUPERCONTAINERS

/.
‘d
fs\ ALCF

— Theta: Singularity

— Aurora: Singularity

fs\ OLCF
— Summit: Singularity (trial)
— Frontier: Singularity

— Cori: Shifter
— Perlmutter: Shifter & Podman

<&
\Q NERSC
<
[3=5)

fs\ LLNL

Container runtimes on different DOE systems

— Sierra/Lassen: Singularity (trial)

— Linux clusters: Singularity
— El Capitan: Singularity & Podman

O LANL

Charliecloud — Trinity: Charliecloud

— Linux clusters: Charliecloud
— Crossroads: Charliecloud

rs\ Sandia

— Astra: Singularity, Charliecloud, &
& Podman

Charlecioud — Linux clusters: Singularity & Podman

Many sites are rolling out container runtimes for users.

We are developing resources to facilitate consistent, performant deployment across sites.

But what about building containers for HPC??

4 Podman & Charliecloud

/"« Podman/Buildah provide container build functionality
through low privilege
— UID/GID mappers with shadow-utils

— Overlay & FUSE for mount operations

 Charliecloud for fully unprivileged build with single
UID/GID mapping to UIDO

— Simpler setup, remains entirely unprivileged
- Requires fakeroot injection in container

» Both implementations prototyped and working

e Next Steps
— Enable E4S container builds directly on DOE/ECP resources

— Integrate with Cl activities & DevOps

» Able to work with facilities to help roll out new capability

//Supercontainers created two HPC build solutions:

= M :
salloc -N SNP && mpirun -np $NP singularity
exec eds-1.2.4.sif /fapp

docker://gitlab.doe.gov/eds/edsecp:1.2.4

OCl Image Registry “

podman push gitlab.doe.gov/eds/edsecp:1.2.4

podman build -t “gitlab.doe.gov/eds/edsecp:1.2.4" .

v
7/

/" New taxonomy of container privilege levels

type namespaces setup IDs in container examples

UIDs and GIDs *dOCer CSJ

I mount privileged : =

shared with host ,1’ PO dman h

mount arbitrary UIDs and GIDs (_S/ & docker
II + prl\nleged Separate from host = HPC-focused

privileged user (but pitfalls) £ podman

mount

- host EUID & EGID aliased '

1T + unprwﬂegEd (supplemental GIDs partially functional) oo° 2 podman

unprivileged user

only Type III containers are fully unprivileged throughout the container lifetime

host
root 0
bin 1
host alice mm
bob 1001
65505
65,536
reserved 00
for Alice

265,535 | €«—»
265,536

reserved
for Bob EI

365,536

=

container
0
1

65,536
65,537

” Supercontainers team leading container build technologies

Jetc/subuid
alice:200000:65536
bob:300000:65536

Jproc/selffuidmap
1000 1
1 200000 65536

Example of Type Il user namespace mapping

used by container runtimes

From: Reid Priedhorsky, Shane Canon, Tim Randles, and Andrew Younge, Minimizing privilege for building HPC containers, in SC '21:
Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, Nov 2021.

/.
/

Many DOE codes use Gitlab for developing HPC applications

Need to leverage Continuous Development and Continuous
Integration capabilities
« {build test,deploy} HPC apps in containers

« Automatic building container images

Gitlab Cl has git-lab runners, but expect elevated privileges

Solution: Podman-in-Podman
« The gitlab runner built in a OCI container image

« Run Rootless Podman to have gitlab-runner think it has root privs
 Gitlab-runner auto-starts a container build within the 1st container
« Push resulting container to Gitlab container registry

Simplified container build & deploy infrastructure with Gitlab

Solution appliable to SNL as well as greater DOE infrastructure
« Future integration with DOE Jacamar runners

/" Podman - in - Podman for containerized Ci

G = t I | Container registry

// Extreme-scale Scientific Software Stack (E4S)

@ Spack

/4

74 E4S: HPC Software Ecosystem — a curated software portfolio

» A Spack-based distribution of software tested for interoperability
and portability to multiple architectures

* Available from source, containers, cloud, binary caches
» Leverages and enhances SDK interoperability thrust
* Not a commercial product — an open resource for all

e E4S over time:

Oct 2018:

Jan 2019:

Nov 2019:

E4S 0.1

E4S 0.2

E4S1.0

24 full, 24 partial release products
37 full, 10 partial release products

50 full, 5 partial release products

https://e4s.io

Feb 2020: E4S 1.1 61 full release products
Nov 2020: E4S 20.10 67 full release products Lead - Sa m ee r S h e n d e
* Feb 2021: E4S 21.02 67 full release, 4 partial release (U Oregon)
e May 2021: E4S 21.05 76 full release products .
Y P Also include other products .e.g.,
— Aug 2021: E4S 21.08 88 full release products

Al: PyTorch, TensorFlow (CUDA, ROCm)

- Nov2021: E4S21.11 Co-Design: AMReX, Cabana, MFEM

91 full release products

https://e4s.io

¥

.

/" 0ur strategy is to focus on Exascale systems

o . ; 4 : % Ouk Rins ! :
i & st 1 s St nal | s oy
Perlmutter - pees | IO HER
- e f - aL--. i

We aim to leverage the new containerized PE to enable Cl for these environments.
— We are experimenting with containerized builds for the Cray environment

We have worked with HPE/Cray to enable Spack to autodetect PE components
— Metadata for Spack now ships with the PE itself, can be automatically used via spack install --reuse

GPU integration across the stack will be an ongoing focus
— We are improving our compiler and GPU support model - compiler interoperability is a major focus

We aim to have a distribution of optimized Spack binaries for these systems by the end of
ECP

— Spack will work on Exascale systems out of the box

We will also have optimized container images that can use these binaries
— Users will be able to construct images from E4S packages on demand, run optimized on exascale machines

