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ECP Supercontainers activity as Packaging Technologies

• Ensure container runtimes will be scalable, interoperable, and well integrated across DOE
– Enable container deployments from laptops to Exascale
– Assist Exascale applications and facilities leverage containers most efficiently

• Three-fold approach
– Scalable R&D activities
– Collaboration with related ST and AD projects
– Training, Education, and Support

• Activities conducted in the context of interoperability
– Portable solutions

• Optimized E4S container images for each machine type
• Containerized ECP that runs on Astra, A21, El-Capitan, …

– Work for multiple container implementations
• Not picking a “winning” container runtime

– Multiple DOE facilities at multiple scales
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There is a performance-portability continuum

• Portable container images can be moved form 
one resource deployment to another with ease

• Reproducibility is possible
– Everything (minus kernel) is self-contained
– Traceability is possible via build manuscripts
– No image modifications

• Performance can suffer – no optimizations
– Can’t build for AVX512 and run on Haswell
– Unable to leverage latest GPU drivers

Portability
Performance

• Performant container images can run at near-
native performance compared to natively build 
applications

• Requires targeted builds for custom hardware
– Specialized interconnect optimizations
– Vendor-proprietary software

• Host libraries are mounted into containers
– Load system MPI library (glibc issues!?)
– Match accelerator libs to host driver

• Not portable across multiple systems

How do we strike the right balance?



HPC Container Runtimes today
• Docker is not good fit for running HPC workloads

– Building with Docker on my laptop is ok!
– Deployment issues: Security, scheduler integration, etc

• Several different container runtime options in HPC

• All our HPC container runtimes are usable in HPC today

• Each runtime offers different designs and OS mechanisms
– Storage & mgmt of images
– User, PID, Mount namespaces
– Security models
– Image signing, validation, registries, etc

• New tools emerging for rootless container builds as well!
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Supercontainers investments in HPC container runtimes

Charliecloud

• multi-stage unprivileged build (0.19) 
• fool distribution tools into thinking they’re privileged 

(0.20) 
• push to image repositories (0.22)
• architecture-aware pull (0.24)
• automatically make SSH secrets available to build (0.25) 
• mount SquashFS images at runtime using FUSE (0.26, 

upcoming) 

Shifter

• Initial scalable container launch for Perlmutter

• Further integration with Podman being explored

• Bugfixes and registry compatibility upgrades

Podman

• Developing MOU Red Hat with DOE labs

• Rootless Podman builds on HPC login nodes

• Enabling SIF image support (Singularity compatibility)

• Investigating scalable launch of OCI images
– Leveraging Shifter’s squashfs experience

• Native overlay support

Singularity => Apptainer

• HPCng project renamed to Apptainer

• Managing ongoing fork issues in community

• Security fixes and bugfixes ongoing 

5



Container runtimes on different DOE systems

LLNL
– Sierra/Lassen: Singularity (trial)
– Linux clusters:  Singularity
– El Capitan: Singularity & Podman

NERSC
– Cori: Shifter
– Perlmutter: Shifter & Podman

LANL
– Trinity: Charliecloud
– Linux clusters: Charliecloud
– Crossroads: Charliecloud

Sandia
– Astra: Singularity, Charliecloud, & 

Podman 
– Linux clusters: Singularity & Podman

OLCF
– Summit:  Singularity (trial)
– Frontier: Singularity

ALCF
– Theta: Singularity 
– Aurora: Singularity

Many sites are rolling out container runtimes for users.
We are developing resources to facilitate consistent, performant deployment across sites.
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Supercontainers created two HPC build solutions: 
Podman & Charliecloud

• Podman/Buildah provide container build functionality 
through low privilege
– UID/GID mappers with shadow-utils
– Overlay & FUSE for mount operations

• Charliecloud for fully unprivileged build with single 
UID/GID mapping to UID0
– Simpler setup, remains entirely unprivileged
– Requires fakeroot injection in container

• Both implementations prototyped and working

• Next Steps
– Enable E4S container builds directly on DOE/ECP resources
– Integrate with CI activities & DevOps

• Able to work with facilities to help roll out new capability
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Supercontainers team leading container build technologies

From: Reid Priedhorsky, Shane Canon, Tim Randles, and Andrew Younge, Minimizing privilege for building HPC containers, in SC '21: 
Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, Nov 2021.

Example of Type II user namespace mapping 
used by container runtimes 



Podman – in – Podman for containerized CI

• Many DOE codes use Gitlab for developing HPC applications

• Need to leverage Continuous Development and Continuous 
Integration capabilities

• {build,test,deploy} HPC apps in containers
• Automatic building container images

• Gitlab CI has git-lab runners, but expect elevated privileges

• Solution: Podman-in-Podman
• The gitlab runner built in a OCI container image
• Run Rootless Podman to have gitlab-runner think it has root privs 
• Gitlab-runner auto-starts a container build within the 1st container
• Push resulting container to Gitlab container registry 

• Simplified container build & deploy infrastructure with Gitlab

• Solution appliable to SNL as well as greater DOE infrastructure
• Future integration with DOE Jacamar runners
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Extreme-scale Scientific Software Stack (E4S)

• E4S: HPC Software Ecosystem – a curated software portfolio

• A Spack-based distribution of software tested for interoperability 
and portability to multiple architectures

• Available from source, containers, cloud, binary caches

• Leverages and enhances SDK interoperability thrust

• Not a commercial product – an open resource for all

• E4S over time:
• Oct 2018: E4S 0.1 24 full, 24 partial release products

• Jan 2019: E4S 0.2 37 full, 10 partial release products

• Nov 2019: E4S 1.0 50 full,  5 partial release products

• Feb 2020: E4S 1.1 61 full release products

• Nov 2020: E4S 20.10 67 full release products

• Feb 2021: E4S 21.02 67 full release, 4 partial release

• May 2021: E4S 21.05 76 full release products

– Aug 2021: E4S 21.08 88 full release products
– Nov 2021: E4S 21.11 91 full release products 

https://e4s.io 

Lead: Sameer Shende 
(U Oregon)

Also include other products .e.g.,
AI: PyTorch, TensorFlow (CUDA, ROCm)
Co-Design: AMReX, Cabana, MFEM

https://e4s.io


Our strategy is to focus on Exascale systems

• We aim to leverage the new containerized PE to enable CI for these environments.
– We are experimenting with containerized builds for the Cray environment

• We have worked with HPE/Cray to enable Spack to autodetect PE components
– Metadata for Spack now ships with the PE itself, can be automatically used via spack install --reuse

• GPU integration across the stack will be an ongoing focus
– We are improving our compiler and GPU support model – compiler interoperability is a major focus

• We aim to have a distribution of optimized Spack binaries for these systems by the end of 
ECP

– Spack will work on Exascale systems out of the box

• We will also have optimized container images that can use these binaries
– Users will be able to construct images from E4S packages on demand, run optimized on exascale machines


