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2 ‘ Conversion Cathode Materials

Next-generation rechargeable batteries demand
increased energy and power density

* Conversion cathode materials undergo a
chemical reaction to produce new products

* Typically contain more abundant and safer
materials

* Due to the complexity of the reactions, these
materials are not fully understood

Nitta et al., Materials Today, (2015), 18, 252-264
Wang et al., Joule, (2019), 3, 2086-2102
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3 ‘ FeS, Reaction
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+ I Mesoscale Modeling — Conversion Reaction
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5 ‘ Pseudo-Two-Dimensional (P2D) Model E
* Large mesoscale simulations can be computationally expensive and difficult to run i
* We can simplify the process through an adapted pseudo-two-dimensional approach which considers

relevant transport both on the electrode and particle scales I
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‘ Model Equations and Variables

* Used adapted Doyle-Fuller-Newman (DFN) half-cell model with non-ideal transport for the intercalated
lithium and an additional equation that tracks the shell thickness

* The presence of the shell affects the solid potential, electrolyte potential and lithium-ion concentration
at the reaction surface as well as the overall electrode conductivity
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7 ‘ P2D C/5 Model Results
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; ‘ Leading Loss Mechanisms

* The P2D model enables us to
identify the leading loss
mechanisms for the cell

* At slow c-rates, solid-state
diffusion and shell electrical
conductivity are the leading loss
mechanisms

* At faster c-rates, additional losses
including kinetic and electrical
conductivity through the electrode
become relevant

Horner et al., Journal of Power Sources (Submitted)
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9 ‘ P2D Model Polydispersity E
* We include polydispersity by introducing a variable effective particle radius and specific active surface
area
* Inclusion of polydispersity results in a lower capacity in the conversion regime, particularly at slow c- I
rates, when compared to a single particle approach I
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10 ‘ Three-Dimensional Electrodes

* Three-dimensional electrodes are intriguing due
to their potential to outperform planar electrodes

By extending the P2D approach to three-

dimensional electrodes, we can validate this
assertion for FeS,
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1 I Conclusions and Acknowledgements

* We developed a polydisperse, P2D model to represent
the full behavior of FeS, during lithiation

* The model helped to identify solid-state diffusion and - crs c/1o e
shell electrical conductivity as the leading loss ~ &.l /| |/ | [Soee
mechanisms
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* Incorporation of polydispersity led to decreased capacity
in the conversion regime
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