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[Abstract] Here we examine models for particle curtain dispersion using drag based formalisms and their
connection to streamwise pressure difference closures. Focusing on drag models, we specifically demonstrate that
scaling arguments developed in DeMauro et. al. [1] using early time drag modeling can be extended to include late
time particle curtain dispersion behavior by weighting the dynamic portion of the drag relative velocity e.g.

dx g dx
U - d_) —>U-ap v d_) by the inverse of the particle volume fraction to the “sth power. The additional
t t

parameter e.g. o introduced in this scaling is related to the model drag parameters by employing an early-time late-
time matching argument. Comparison with the scaled measurements of DeMauro et. al. suggest that the proposed
modification is an effective formalism. Next, the connection between drag-based models and streamwise pressure
difference-based expressions is explored by formulating simple analytical models that verify an empirical (Daniel
and Wagner [2]) upstream-downstream expression. Though simple, these models provide physics-based approached
describing shock particle curtain interaction behavior.
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Subscripts/superscripts

0 = constantorpre-orifice location

1 = pre-shock or orifice location

2 = post-shock or post orifice location
ave = average

early = asymptoticearly time

late = asymptoticlatetime

m = match

1. Introduction

numerous relevant applicationsasdescribed in [1] While high fidelity computationalefforts and experimental

measurements are capable of providing detailed shock dispersion behavior a simple analytical approach is
valuable for preliminary design applications and as a way to delineate relevant physical behavior. A series of
simple analytical arguments combined with detailed physical measurements were used by DeMauro et. al. [1] to
analyze particle curtain dispersion due to moving shock interaction. In thatstudy a particle volume fractionscaling
argument was justified by examining simple Lagrangian particle behavior with appropriate drag force constant
calibration valid for early time interaction. Comparison with data suggested that this choice of variable is an
effective description of the volume fraction behavior for the dispersion process. Moreover, this scaling law appears
to be effective well beyond the theoretically justified early time behavior. As such, we examine the efficacy and
justification needed to extend the simple early time argument to asymptotic late time behavior. The resulting
modifications are discussed here using both physical and mathematical closure arguments. We emphasize that no
additional parameters are introduced in our expressions beyond the tradition drag formulation.

Dispersion of particles by shock interaction is a fundamental problem in multi-phase shock physics with

Local particle drag models provide a relevant force closure model for both individual particles and the particle
curtain, however other approaches are known. For example, an upstream-downstream pressure difference model,
2

dx
analogous to the pressure drop over a screen: ¢pp50A— =F, c pA(p, — p,) provides another loading

dr’
expression. Here we examine the physical basis of this approach using simple analytical models to better elucidate
physical behavior. A particularly relevant description of this problem is provided by Daniel and Wa gner [2] who
discuss analysis and measurements for the shock-particle interaction problem. An empirical result from that study
suggests that the pressure difference that causes dispersion of the associated with the particle curtain can be
described by:

pu - pd = Cmea‘v¢1/2plu§ ’ Cmeas = 96 (1)

Measurements from Daniel and Wagner demonstrate the efficacy of equation (1). Using a screen drag pressure
drop modelas a surrogate for the particle curtain with appropriate extensions for compressible flow behaviorwe can
show good agreement with the Daniel and Wagner [2] result.

While useful in terms of providing simple analytical tools, the construction of these models using both drag
formalisms and stream pressure balance also permit us to examine the component physical processes inherent to the
multiphase shock particle curtain interaction. We examine the drag-based scaling formulation and the pressure
difference formulationsin detail.

II. Early-Late Time Asymptotic Drag-Based Models

Consideration of the force balance using the drag-based formalism of DeMauro et. a.[1] on a unit area segment of
the particle curtain starts with:
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d*x v dx dx
®p,0, e :p[al E+a2(U_E)j(U_E) @)

Where the two “constants” o1 and oz describe a low Reynolds number and high Reynolds number drag laws,
respectively.  These so-called “constant” expressions contain other information including volume fraction or
Reynolds number information. Indeed, they must allow for the fact that for p<<Il that the particle displacement

must also be negligible. If this limit is to be bounded, we expect that ¢, c@™; n >1 and

o, cp™; n,>1. Indeed, in the analytical work developed in [l] we proposed that
(03/2

a, Ca, < W ~ (p3/2 . The other variables are defined by:
¢

The obvious non-dimensionalization follows as:
t = t , x = d
N ’ N 5, 3)

. * X . . . .
While x = 5— Applying these expressions to equation (2) gives:
0

d*x wl P o dx’ dx’
— = — || CRe, +C,(1-—%) |(I-—
dr™? » P, 1 d 2( dt ) |( dt ) “)

ud : . x
where Re, =—— We emphasize the physical curtain width is X =, +x —> X =1+x =1+-—
v 0

Examination of the equation (4) indicates thatthe magnitude of the drag source term for the particle cloud is related

to the particle volume fraction ¢1/2 . However, this description is incomplete since the rate of change of the dragis

*

dx

ok

controlled by the relative velocity terms e.g. (1— ) as well. Here we propose that these relative velocity terms

are also affected by particle volume fraction. Indeed, for a small particle volume fraction, we expect that the

*

X

particle cloud dispersion velocity F is enhanced since particle curtain is readily penetrated and exposed to shock
t

field. As such, a modification of the form:

*

dx
I-—)—>(-agp
(dt) (I-agp

5

ax
d[** ) (5)

would seem appropriate. We need to estimate the power law coefficient “a” and the constant a.

An estimate for the power law exponent a is readily obtained by noting that that the drag term must be valid as
@ —> 0. Thus, collecting the highest order terms in in ¢ yields the requirement: 2a <1/2—>a<1/4. Thus,

choosing the largest possible exponent, we select @ =1/4 . The constantais estimated subsequently.

Upon choosing the drag velocity exponent equation (4) can be rewritten as:
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d*x" Ldx _ dx

*) C] +cz (l_a **) ( - **) (6)
dt dt dt

Y -1 _| P 4 14 . ) )

where ¢, =| — |Re, C, and ¢, =|— |C, and { =@ 't = —1¢. Notice that equation (5) is
Py Py 0

invariant with ¢ when placed in the scaled variable t* which is the scaling used by DeMauro et. al. [1] for the early
time modeling.

Equation (6) is immediately integrable to give:

x =at —ﬁln[l—c—Z(l—exp(—ﬁt*))] ™
C, q o
Where ¢, = £ Re;1 C andc, = £ C,
P, P,

Examination of equation (7) suggests that there two behaviors:
1. anearly time condition and
2. alate time asymptotic behavior.
Let’s examine these conditions in detail. The early time i.e. t*<<I trajectory can be written:

*

1 "
:E(Cl +e )+

xearly (8)
Which reflects an approximate form of the differential equation of the form:
d’x.
early
——~ (¢ +c
dt*Z ( 1 2 ) (9)

Implying that the curvature is related to the dimensionless constants c¢1 and c2.  Notice that equation (9) is
independent of the volume fraction when written in terms of t = §01/4t*’k and does not depend on the introduce

constant a. We emphasize, that the constants ¢; and c2 are related to the drag modeling and can be estimated by
considering any one of a wide range of empirical or semi-empirical modeling parameter calibration.

In a similar mannerthe late time (asymptotic) result can be written

X =t +b

(10)
where b is the y intercept.

While, the one can more easily utilize the near field behavior to provide information for ¢ and c2, the magnitude of
the associated constant o is not as readily achievable. Let’s examine estimates for this term. Demanding that the

slopes of'the nearfield and late time solutions match fortime t gives:

m

(24
Py an

(¢ +cz)t:; =a _)t;:z =
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A match of the function then gives:

1 *) *
E(C1 +c,)t, =at, +b (12)
Obviously, to proceed we need to estimate b. Here recognize that the “x” intercept say t,.* such that

0= at: +b—>b= —atl.* associated of the linear problem is bounded between 0 and t; . Actually, we have more

information. The data clearly illustrate that there is a lag period where there is no spreading i.e. X =0 such that

* * * . .
tlag ~3. Thus, we can posit that 3 < t, <t, . With these bounds, we can estimate thatan averagebased on these

values (we discuss the actual average subsequently) would be a good approximation for tl.* . Let’s combine these

results to give a single expression for o:

2
1 a a . 1 .
—(c, +c = —at. >0=—a—(c, +¢,)t.
2( ! 2)(6‘1-}-6’2} (cl+czj ’ 2 SRa 13)

To use equation (13) we need to estimate t:- Let’s consider three average definitions: arithmetic, harmonic and

geometric:

" 1 a . 2 . o
G ) 5 o b,m—————— 5 L, =3—)" (14)
- 2 ¢ +c, - 314 ¢ +c¢ - ¢ t+c,

o

Substitution of the arithmetic mean is quickly shown to yield a singular result (the arithmetic mean in not
independent of the linear approximations used) while the other two canbesolved to give:

1 2
E(Z—(Cl +C2) W —O—)(Z—9(C1 +CZ)

a (15)

|
—a—(c,+¢,)3—2)? =0 > a=12(c, +c,)
2 ¢ +c,

As a useful bounding value, we use t,.* =3 to compute & = 6(6‘l + Cz) . A reasonable choice for the modelis to

use & =9(c, +c,).
Empirically, ~we can estimate ¢ = 0.032, C, = 0.041or if we permit ¢, =¢, then

1
C]ZCZ22(0.032+0.041)=O.018. In figure 1 we compare the results of equation (7) with

a= 9(6‘1 + C2) and the estimates for c1 and c2 described here to a regression expression (with selected data points

U
V4 —1 for volume

0

included) follow the data of DeMauro et. al [1]. expressed in terms of the variable t = (1)
fractions ranging from 9% < @ <32% . The comparison between the model for the various values of forc; and

5
American Institute of Aeronautics and Astronautics



c2 is good suggesting that the proposed solution procedure is appropriate. Notice that

*

. : : odx : o :
a =9(c, +c,) = 0.66 implying that the late time particle velocity is 7 = ¢ . This statement is consistent with
t

- =

a post-shock velocity reduction.

O Measurement DeMauro et. al.
— analytical solution, c1=0.032, c2=0
— — analytical solution c1=0, c2=0.041
----- analytical solution c1=c2=0.019)

157
10+
Q
=
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tf‘.‘
Figure 1. Comparison between equation (6) with & = 9(6’1 + CZ) and the estimates for ¢i and ¢2 and the data of
DeMauro et. al. [1] suggesting thatthe proposed modeling approach may be generally viable.

The preceding analysis provides a useful estimate for the constants associated with drag expressions. The actual
model constants,ci and c2 we estimated by comparison with available data sets. There are approachesthat can be
used to estimate these constants themselves. These techniques require formulating functionally similar solutions
with associated supporting parameters that are to be determined. Then, by demanding coincidence of the two
functionalexpressions, constraint equations can be formulated that provide estimates forthe associated parameters.
Generally, supposition of appropriate, linearly independent functional forms that are analogous, is challenging.

Here, however, there two solution immediately available corresponding to linear models (denote as xf) and

*
quadratic models (denoted as X forthe drag. We can write them as:

*

d*x’ dx
— =4 l1-a' ! 2
dt? ( dt )
16
2x; dx, 1o
L= p-a 2
de? ( dt )
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Though written using the constants “A” and “B” the correspond as: 4~2c, ; B=2c,. Solution to both

expressions is trivial as:

s a At +a
a

X, y (At* —aln(———)

(7)
X, = %(Bt* + a(exp(—gt*) - l)j

Following our “prescription” we now as for equivalency between these to expressions. There are many possible
constraints that we can use to achieve similar behavior. A traditional requirement, for example, is to require:

o0 0

* * * *
qudt =jxl dt , unfortunately, these results are unbounded forcing us to consider other alternative. A
0 0
particularly simple constraint is to ask that the two results equal for a particular value, which is called collocation.

Of course, choosing a particular value for equality is difficult, but a possible scale is ' =ad™. Using this value,

. . . * -1 * -1 .
we can solve the associated nonlinear expression X, (A )= X, (aA7). The equation can be solved exactly,

but is best represented by as: B =(0.7840A since the algebra is complex. The absence of the o term follows from
2¢,  0.032

2¢, 0.041

the equation and is exact. We note that this expression is consistent with — = = (.781 where we

haveused our empirical estimates for c; and c».
Obviously, the current expression, fails to offer an explicit value for A and we need to invoke another constraint. A

second viable constraint is challenging, since the collocation at a second point will yield a set of expressions with no
possible solution. Indeed, one of the challenges of this approach is to identify nonlinear expressions that are non-

2 *
trivial. A constraint that is readily available and is bounded for t*>>1 is the acceleration - Thus, a
t
d’x, d’x
particularly useful constraint is to require matching at a point (say t*=T*) as d_*zq = d_*zl . Asbefore,
t [ A
=7" t =T

we need to choose an appropriate estimate for the match point. An obvious choice is simply, ' =ad.
Unfortunately, utilization of this time scale does notyield a solution, since the closure is not sufficiently independent

of our previous analysis. We could alternatively, choose a differentscale say, t'=ad”’. This approachisviable
and indeed, we can solve for an explicit value of A. A more general approach is to examine a range of closures

suchas: ¢ = aA™” where v=1/2,1,3/2,2... We presentthese results in table 1.

Time scale coefficient Solution A c,~Al?2
y=1/2 0 0

y=1 0 0

y=3/2 0.0789 0.0394
V=2 0.2808 0.1404

Table 1. Estimates formodel coefficient forseveral time scale closures (collocation locations).
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Examination of the ¢ parameter estimate for y=3/2 in table 1 ie. c¢,~=A/2~0.0394and
¢, =0.781(0.0394) = 0.0308 as compared with the empirical result obtained previous: ¢, =0.032 and

c, = 0.041demonstrates good agreement, suggesting that the parameterestimates are likely reasonable.

With access to the closure constants described previously, there is value in rewriting equation (5) in dimensional
form. Using the previous definitions, we write:

d’x 1 1 dx 1 1 dx
S —oU? 0 vVt ——— =X ve 4 L ar
Pooar ~? [(p el U dt)j( S renU di’
(18)
_ 1 1 dx 1 1 dx
=oU?| p"* £ Re,' C, + £ C(p" - ———) (" ———=)
B 5 9c,+c,) U dt 9(c,+c,) U dt

The definitions in second line of equation (17) are useful since the gas to solid particle ratio is explicitly included.

Since the model was derived for and air soda glass problem we can estimate: L |- 0(1073) so that the
P

constants in equation (17) are: Re,'C, ~0(10°)0.032=32and C, = 0(103)02 =0(10°)0.041 =41
implying that:

d’x Yo, ( 1 dx j 1 dx
S, — =U?| L= || 32¢"* + 41(p"* —1.52—) ("4 —1.52——
PO =P [pp] @ (¢ Udt) (¢ Udt) (19)

Equation (19) provides a reasonable estimate for a drag law closure. Notice that the late time particle curtain

dx
velocity is given by: % =0.66¢0"U .
t

III. Streamwise Pressure Difference Shock Particle Curtain Dispersion Models

As described previously, an upstream-downstream pressure difference model, analogous to the pressure drop over a
screen which provides a formulation for the force loading dynamics of particle curtain that is more directly applied
to the particle curtain as whole as compared to the drag-based formulation. A particularly relevant description of
this problem is provided by Daniel and Wagner [2] who discuss analysis and measurements for the shock-particle
interaction problem. An empirical result (equation (1)) from that study suggests that the pressure difference that
causes dispersion of the associated with the particle curtain can be described by repeated as equation (20)):

P~ P, =Co0pu; 5 C,, =96 (20)

Measurements from Daniel and Wagner demonstrate the efficacy of equation (1). Notice that this pressure gradient
2
X
is directly utilized in a particle curtain drag formulation of the form: ¢pp50A dr? =Fp < @A(p, — P,) and that

a volume fraction weighting term is externally included in the right-hand-side of the force balance model.
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While useful as written, there is value in ascertaining the connection between the empirical closure for equation (1)
and classical theory. A successful analogy between particle curtain behavior and pressure drop associated with
compressible flow over screens (wire mesh gauzes) was utilized by DeMauro et. al. [1]. In that effort, particle
volume fraction behavior for the drag/pressure drop associated with particle curtain was ascertained by examinatio n
of several closures discussed by Pinker and Herbert [3] and was shown to provide a useful scaling behavior for
curtain particle trajectories. However, DeMauro et. al. did not seek to ascertain the magnitude of the pressure
difference, which is required to assess the empirical constant in equation (1).

Pinker and Herbert examine a range of closure models for incompressible pressure drop associated with wire gauzes
to write the expression:

1
Ap = Eﬂ'olozuz2 s Ay =A(9) e

Where the incompressible function 2’0 (@)is given by a range of models such as:

1-¢ _ (2-9)
A (@) = ¢, =G (- ¢)2 ; ¢, =05 22)
. . . . 92—
A particularly convenient representation of the volume fraction expression ﬁ written for 0<@<0.5 can be
—Q

determined using;

T 3/2 OAS p(2-9) \/_
const-([go dgo:.[(l—dq)—)const:S 2~7 23)

-9y

such thatwe can write: A,(¢) = 3.5¢°"

While the pressure drop relationships described previously are viable for low-speed flow, the problem class of
interest is decidedly compressible, and indeed, Pinker and Herbert describe extensions to the model to account for
the increase in drag associated with compressible behavior. The behavior for compressible flow is rather more
complex due to the potential for choked flow behavior. Indeed, for choked behavior one can observe a dramatic
increase in the associated pressure drop. Local choking is driven by the particle curtain geometry with an increase
in likelihood of choked behavior for ¢—1 and for higher speed behavior in the local flow field Mo—1. We
emphasize that Mo is the upstream of the screen/mesh/particle curtain and that M*=My when the flow chokes in the
mesh/particle curtain.

Pinker and Herbert [3] and [4] discuss the pressure drop (drag) for compressible flows through screens. As
indicated, this process is a function of the local Mach number and particle volume fraction. The compressibility
enhancement factor for Cdrag is modeled via:

* b
Cdrag — ;Al bz1/7
C M —M,

drag _inc

24

Obviously for M, — M the pressure drop will be very large which is physically confirmed by the measurements
of both [3] and [4]. To use equation (24) we need to be able to estimate the choking Mach number M. A good
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approximation to M can be obtained using simple isentropic theory via the classical Mach number area
relationship where the area ratio is a function of the particle volume fraction. This expression is simply:

7+l

* 2 7/—1 *) 2(1=y) _

Obviously for ¢ =0 M =1. Equation (11) is implicit for M* which is inconvenient, but can be remedied by a
y+1

2 -1 . \20-» .
1+ Y m z)j ~ M " whereby we can approximate:

y+1 2
M = (1- (p)3/2 . Equation (5) then becomes:

Cdm (1_¢)3/2 b
Con :(a— Syl B 26)
® 2

drag _inc

simple approximation (valid for y=1.4) M’ (

@98 45 a function of M> as shown in figure 2. The

The result of equation (26) can be presented in a plot of
drag _inc
results demonstrate the strong increase in drag associated with choking in the particle curtain.

[— ¢=0.2 — ¢=0.4 — ¢=0.5|

an
£ 3
o
g
UI
]
s’.Eil
o2
1 ; ; . . .
0 0.2 0.4 06 0.8 1
M_2
. . d .
Figure 2. plot of the compressibility effecton drag ~£— _ Note the large increase asthe Mach number
drag _inc

approaches the chokingMach numberM”*

While equation (7) correctly deducesthe large increase associated with choked flow, it is unfortunately not bounded,
and thereby, cannot provide an upper limit for enhancement associated with the choke flow behavior. An estimate
for the pressure drop across the screen choked flow is necessary.

The screen pressure drop is a characteristic of irreversible flow behaviors (weak shocks, turbulent mixing etc.) and is
typically estimated empirically. A special case where analytical estimates are viable, however, is the so-called
rapid expansion problem, a very well-known and classical problem associated with incompressible minor head
losses. Indeed, the pressure drop (head loss) expression for the rapid expansion from a constriction area ratio:
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4,

— =1—¢@yields

A, 2
2

involved, a compressible formulation for this pressure drop is possible as well, which we derive in detail in the same

appendix. Therefore, while the specific magnitude of this pressure drop model is insufficient to describe the screen
drag problem, the ability to compute an analytical estimate for both compressible flow and incompressible pressure

2 2 5
= (é — IJ = [L — l) = (0—2 (See appendix for details.). Further, while
4, l-¢ (I-9)

dra . . . . . .
% ratio. This ratio may then in turn be used as an approximation

drop and thereby provide an estimate for
drag _inc

for a compressibility correction factor forthe more general choked screen problem.

The compressible extension for the rapid expansion problem, while algebraic, does not have a closed form solution
and is perhaps best examined for a range of discrete values. These values in turn support a simple regression

analysis (for y=1.4) to give the simple expression:

C
d —4/5
— ~1.7¢ 0.1<p<0.5 @7)
drag _inc | % 4
We can plot the result in figure 2. Further an average value is readily obtained as:
Cow | 17 |
di .
rag — J.¢4/5d¢z35
Cdragiinc ‘ave 1 - 0 1 0.1
| © exact solution —— approximate 1.7/(cpA0.8 )|
159
£ 101
o
g
UI
T
o
o
S
U5
0 - . . ; .
0.1 0.2 0.3 0.4 0.5

volume fraction @

Figure 3. Comparison between exact numerical solutions and analyticalapproximation for — for rapid

drag _inc

expansion problem.

Finally, equation (20) is based upon the pre-shock density p1, whereas the formulation developed here uses the post-
shock value p2. The shock density ratio is computed as:
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g y=\p)

) y+1 LD (28)
r=1 p
. :_r+1ip
which can be related to the shock speed through: M, =~———| == —1|+1. The measurements performed to
2y \p
support equation we for relatively weak shocks: 1<Ms<1.7 so that taking an integral average:

P> 1L o
2l - —[Bdm, =16

Using the preceding expressions, we can then estimate the pressure difference for the particle curtain problem as
described by equation (20). As a starting point we emphasize that the pressure difference for equation (20) hasbeen

weighted by @, whereas the screen drag expression has not and should be directly applied without this term as:
2

d"x

Let’s assemble the components forthe pressure difference model:
e Incompressible term: A, (@) = 7c,0”” =3.5¢"° ; ¢,~0.5

e Choked flow correction: —~% |  ~3.5
drag _inc |,
e Density ratio £ J. P dM 1.6
pl ave 1 7 1

Using these expressions, we then write:

Crag P 2 3/2 2 32 2
ﬂo(co) c —— || |pu, =(3.5¢")3.5)1.6)pu;, =9.8¢"" pu; 29)
drag _inc |, 1 lgve
which is in good agreement with the Daniel and Wagner [2] empirical result Cmem =9.6.

Obviously, there is a considerable degree of approximation inherent to the current approach and we can atbest offer
that the current estimates for the constants provide an order of magnitude correct value. For example,bychanging
the range of approximation orintegration average, we could write:

0.6 0.6

o Incompressible term: constj o *do :.[ %d(ﬂ —> const ~ 8.1 such that 4,(p) = 49"

0 -

1
¢ Choked flow correction % = 11—7 I (0_4/50'(0 ~52
drag _inc |, —0.01 0.01
| 2
e Density ratio Py &dMY =1.8
P ave 2-1 1 P ‘
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1
These modified values would in turn Ap = 5(4(03/2)(5.2)(1 8)pus =18.7¢°" pus larger by a factor of two as

compared to the empirical result. Nonetheless, the formulation structure offers a plausible approach to support the
relationship between streamwise pressure drop across the particle curtain asrelated to the dynamic pressure.

In summary, the modeling associated with this pressure drop closure is largely approximate but there appearsto be a
plausible argument to support the connection between the screen drag pressure drop models and the particle curtain
behavior. More broadly,there is a supportable argument that pressure difference models and drag-based approaches
are closely related.

IV. Conclusion

The focus of this study hasbeen to examine particle curtain dispersion modeling approached based on dragclosures
and their relationship to streamwise pressure difference formulations. We specifically showed that scaling
arguments developed in DeMauro et. al. [1] using early time drag modeling could be extended to include late time
particle curtain dispersion behavior by weighting the dynamic portion of the drag relative velocity e.g.

dx _y4 dx . . . .
U - E) —>U-ap Z) by the inverse of the particle volume fraction to the “4th power. The addition of

extra parameters in the formulation was estimated by employing an early-time late-time matching argument.
Similarly, estimates for the drag law closure constants were estimated using a functional approximation/collocation
method. Comparison with the scaled measurements of DeMauro et. al. suggest that the proposed modificationis an
effective formalism.

The second portion of the discussion examined the connection between drag-based models and streamwise pressure
difference-based expressions. This effort involved formulating simple analytical models that verify a successful
empirical (Daniel and Wagner [2]) upstream-downstream expression. Using a screen pressure drop analog,
extended to include compressible flow choking effects, it was possible to directly show the relationship between
classical drag and pressure difference models. Though simple, these models provide physics-based approached
describing shock particle curtain interaction behavior and help elucidate that physics associated with this complex
phenomenon.

V. Appendix: Compressible Rapid Expansion Pressure Loss Model

Here we derive expressions describing pressure drop through a sudden expansion for compressible flow. This
modelis used asa surrogate for screen loss behavior, which in turn is related to particle curtain losses.

Incompressible Flow

Considering the plate and sudden expansion problems with the notation suggested:

Restriction
Fd Orifice Plate

13
American Institute of Aeronautics and Astronautics


http://en.wikipedia.org/wiki/File:Flow_expansion.svg

we can compute the pressure drop between stations (1) and (2) using the sudden expansion approximation via the
momentum equation to write the pressure drop as:

A
P — D :puz(ul_uz):p”g(j_l) (A1)

1

Where we have used: Ayu, = Au, = A,u, ; A,=A,. To eliminate the pressure at the orifice plate we

assume a lossless behaviorbetween location “0” and location “1”” whereby Bernoulli’s equation and continuity give:

2
1, A
P =Dyt pu (l—(—z] )
1 0 2 0 Al (AZ)
. 2
We can thuscompute M = (é - 1)2 and for é = ; we have (Po pz) = 4 5
270 20

Compressible Flow

The formulation for the compressible problem is broadly similar to the incompressible problem. Focusing on the
irreversible portion of the flow between location “1” and “2” we write the sametype of conservation formation as:
mass:

A = p,u, 4, (A3)

momentum:
plulel +p A —(4,—4)p, = ,ozuzzA2 + p,4, (A4)

and energy:
puAce, Ty, = pu,4,c, T, (A5)

Note, that for adiabatic flow 7;, = 7, We simplify the momentum equation and then divide through by ,01”12‘41 .

Recognizing that (regardless of subscript) that Lz = 5 we now have:
M
A M\ u
2 ey = 0 (1)
A1 ]\42 u, (A.6)
2
u
Let’s square both sides of equation (A.6) and examine the term: [—ZJ . We can relate this velocity ratio to the
u,
temperature through the Mach number definition as:
14
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W _MRT, (MY
w  MORL, M\, a7

Now, we need to eliminate (—zj We use the energy equation and the total temperature definition:
1

1 -1 T.

L =1+ —M? tocliminate | —= |:

T 2

T 1+ L_le Ty, (A.8)
Thus the velocity ratio becomes:
y-1..
_:(Mj oM [T—J
u12 M12 1+ 4 _1M22 Ty, (A9
y (MY (Y
So put it all together in: ((j} + )/MlzJ = (—lzj (u—zj (l + 7/M22 )2 and collect terms to yield:
1 2 U,
1+ 7= g 1+ 7= e ar
2 ~ [ij 2
2 | 2 (A.10)
(1-%]/M2)Z 01 é +}/M12
4,

This expression is the same as that described in Shapiro [5] If we ignore the heat transfer & =1. To utilize
01

equation (A.10) we need to estimate M in terms of Mo. Following the zero energy loss estimate (Bernoulli’s

equation) from the incompressible formulation we assume a similar isentropic model as simply write:

(1+y)/2(y=1)

Iy 1+72_1M§ )
1 _ 2
_ T4 All
M| 7=y 4 (1D
2
15
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Equations (10) and (11) provide a method to estimate the downstream Mach number, i.e. M2 given the passage of

A
the flow through the orifice described by the —%ratio. The next step is to compute the pressure drop for this
1
problem.

(po - P,) _ [(P, -p)—(p, _pl)]'

We can use the preceding equations to compute the drag coefficient 1
5,0”02 5/3”3

While it is possible to compute the downstream pressure p2 using the Mach number at location “2”, the total
temperature and state, the result is not well posed for incompressible flow and is thus not particularly useful. An
alternative formulation that more closely mimics the incompressible formula is preferred. Using the momentum
equation (along with state) we compute:

%

A
2 4N
—p, = pu; — 1)
P~ Py = piYy 4w, (A.12)
1/2
-1
u M 1+7 ="M
We can express the velocity ratio in terms of the Mach numbers as: 2 =2 2 . Using
ul Ml 1 y_lMZ
M,
u, A, A
continuity between location “1”and location “0” we can write: Pt L D we can then write:
Potty A 4
1/2 1/2
-1 -1
Y, 1+ 7= M2 Y, 1+ 7= M2
P, — P —n 1 2 (1 _ 2 )
1 -1 -1 (A.13)
Epoué MO 1+}/TM12 Ml l+}/TM22

The Mach number terms in this expression are specified previously. To compute the drag we also need access to

—(plo — ) since we will compute the drag using K = (plo —P) _ [(p, _p11) —(p = p)] . Since the flow
2,DH0 2,01/10 2,0110

is isentropic between location “0” and “1” so thatwe can write:

1+—7/_1M§ -
Po=p) _ P g Py 2 _ 2 )
2 — Al4

2 2

Equations (A.13) and (A.14) provide access to the pressure loss K with K defined by K=Equ(A.14)-Equ(A.13).

Since we have derived these expressions with the idea that they will correctly recover M=0 behavior we consider the
limiting behavior. Equation (A.14) simplifies as:
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(py—P1) 2 Y 2 2 U2 4, .,
= M- -M)=(—) -1=(—)" -1
= |3 M = G - 1= () Als)
- Pl
2
While equation (A.13) becomes:

Pr=Pi ot Moy (PP 5y

1 u u 1 A (A.16)
5 Potts 0 : 5 Potts :
Thus K, = (P = P)|_ (P, =P) = (é)2 -1- [2(é -D]= (é —1)* which is the expected result with
| 1, 4 4 A
Epuo Ep”o

An important limiting case is associated with the preceding discussion, namely, where flow in the pore system is
choked,ie. Mi=1. Under these conditions the upstream Mach numberis no longer a free parameter forsteady flow
butis defined by equation (14) through:

L ( 2 vl 1+)/2(7-D) 4 1
—| —(A+—=—M;) =—==— (A17)
M\ y+1 2 4 l-9¢ :

In a similar manner, equation (A.10) and the pressure drop expressions, i.e. equations (A.13) and (A.14) can be
utilized by simply replacing M=1.

As stated previously, the magnitude of the current pressure drop model is of rather less importance relative to
providing an estimate for the ratio of choked flow compressible pressure drop to the incompressible value ie.

i . . .
8 This ratio is readily computed as:

drag _inc

Cpoe  qu(A1Y), | —equ(A13)[,

2 A.18
drag _inc (p ( )

(1-9)

Equation (18) is the main result of the appendix and provides an estimate for the increase in drag associated with
choked flow behavior. Note that for  =1.4 (most usefully) that equation (A.18) is a (complex) function of

@ only. This factis leveraged to compute equation (8).

The expression provided in equation (8) in the text and equation (A.18) are useful (and correct) as written, but may

dra, .
£ is unbounded for small volume

be misleading. Examination of equation (8) seems to suggest that
drag _inc
fraction ¢. Indeed, as written, this is true, and there is value in examining why and how this behavior occurs. Let’s

then examine the formulation of the problem for @<<I. We will use » =7 /5 The expressions we need are

17
American Institute of Aeronautics and Astronautics



A 1
equation (A.11) with —2 = —— > 2 =1+ @ and the corresponding expression for the upstream Mach number

4 l-¢ 4
MO is solvable as:

5 7 T (A.19)

A similar computation is possible for equation (A.10) which yields the down stream Mach number M as:

V50 O

M,=1- 5 16 : (A.20)

With these solutions, the preceding for the numeratorof equation (A.18) is readily solvableas:

47430 .,

C 144 » (A21)

drag

= equ(A.l4)|MI L equ(A.lZ’ﬁ)|Ml=1 =

Let’s now examine the behavior for denominator, i.e. the incompressible drag for <<l which gives:

2

A
Cdragiim - (1 ¢) RQ +.. (A22)
. . . d) . d -
We immediately detect the unbounded behavior for - as be proportional as —= Qo i ;
drag _inc p<<1 drag _inc p<<1

obviously the choked flow limit for <<l and the incompressible limit for <<l behave differently. While this
behavior causes unboundedness of the ratio of the choked drag to incompressible drag for p<<1, the actual value

(unscaled) C 47\/_

wg = a2 ~1.8¢0" +... is consistent with the closure described previously:

Ao(p) = 9™
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