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 Here we examine models for particle curtain dispersion using drag based formalisms and their 

connection to streamwise pressure difference closures.  Focusing on drag models, we specifically demonstrate that 

scaling arguments developed in DeMauro et. al. [1] using early time drag modeling can be extended to include late 

time particle curtain dispersion behavior by weighting the dynamic portion of the drag relative velocity e.g. 

1/4( ) ( )
dx dx

U U
dt dt

 −− → −  by the inverse of the particle volume fraction to the ¼th power.   The additional 

parameter e.g. α introduced in this scaling is related to the model drag parameters by employing an early-time late-

time matching argument. Comparison with the scaled measurements of DeMauro et. al. suggest that the proposed 

modification is an effective formalism. Next, the connection between drag-based models and streamwise pressure 

difference-based expressions is explored by formulating simple analytical models that verify an empirical (Daniel 

and Wagner [2]) upstream-downstream expression.  Though simple, these models provide physics-based approached 

describing shock particle curtain interaction behavior. 

 

 Nomenclature 

A = area 

c = constant (locally defined) 

d = particle diameter 

F = force 

M = Mach number 

n = model exponent 

p = pressure 

pd = post shock downstream of curtain pressure 

pu = post shock upstream of curtain pressure 

Re = Reynolds number 

t = time 

U = post shock local velocity 

u2 = post-shock gas velocity 

x = change in particle curtain width 

X = particle curtain X= δ0+x 

α = closure coefficient 

ν = kinematic viscosity 

ε = porosity 

γ = specific heat ratio or locally defined model constant 

δ0 = initial particle curtain thickness 

φ = particle curtain solid volume fraction 

ρ1 = pre-shock gas density 

ρp = particle density 

ρ = post shock gas density 
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Subscripts/superscripts 

0 = constant or pre-orifice location 

1 = pre-shock or orifice location 

2 = post-shock or post orifice location 

ave = average 

early = asymptotic early time 

late  = asymptotic late time 

m = match  

 

I. Introduction 

 

ispersion of particles by shock interaction is a fundamental problem in multi-phase shock physics with 

numerous relevant applications as described in [1]   While high fidelity computational efforts and experimental 

measurements are capable of providing detailed shock dispersion behavior a simple analytical approach is 

valuable for preliminary design applications and as a way to delineate relevant physical behavior.   A series of 

simple analytical arguments combined with detailed physical measurements were used by DeMauro et. al.  [1] to 

analyze particle curtain dispersion due to moving shock interaction.   In that study a particle volume fraction sca ling 

argument was justified by examining simple Lagrangian particle behavior with appropriate drag force constant 

calibration valid for early time interaction.   Comparison with data suggested that this choice of variable is an 

effective description of the volume fraction behavior for the dispersion process.   Moreover, this scaling law appears 

to be effective well beyond the theoretically justified early time behavior.   As such, we examine the efficacy and 

justification needed to extend the simple early time argument to asymptotic late time behavior.   The resulting 

modifications are discussed here using both physical and mathematical c losure arguments.   We emphasize that no 

additional parameters are introduced in our expressions beyond the tradition drag formulation. 

 

Local particle drag models provide a relevant force closure model for both individual particles and the pa rticle 

curtain, however other approaches are known.   For example, an upstream-downstream pressure difference model, 

analogous to the pressure drop over a screen: 

2

0 2
( )p P u d

d x
A F A p p

dt
  =  −  provides another loading 

expression.  Here we examine the physical basis of this approach using simple analytical models to better elucidate 

physical behavior.  A particularly relevant description of this problem is provided by Daniel and Wa gner [2] who 

discuss analysis and measurements for the shock-particle interaction problem.   An empirical result from that study 

suggests that the pressure difference that causes dispersion of the associated with the particle curtain can be 

described by: 

 
1/ 2 2

1 2 ; 9.6u d meas measp p C u C − = =
      (1) 

Measurements from Daniel and Wagner demonstrate the efficacy of equation (1).   Using a  screen drag pressure 

drop model as a surrogate for the particle curtain with appropriate extensions for compressible flow behavior we can  

show good agreement with the Daniel and Wagner [2] result.    

 

While useful in terms of providing simple analytical tools, the construction of these models using both drag 

formalisms and stream pressure balance also permit us to examine the component physical processes inherent to  the 

multiphase shock particle curtain interaction.  We examine the drag-based scaling formulation and the pressure 

difference formulations in detail. 

 

II. Early-Late Time Asymptotic Drag-Based Models 

 

Consideration of the force balance using the drag-based formalism of DeMauro et. a . [1] on a unit area segment of 

the particle curtain starts with: 

D 
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2

0 1 22
( ) ( )p

d x dx dx
U U

dt d dt dt


    

 
= + − − 

 
      (2) 

Where the two “constants” α1 and α2 describe a low Reynolds number and high Reynolds number drag laws, 

respectively.   These so-called “constant” expressions contain other information including volume frac tion or 

Reynolds number information.   Indeed, they must allow for the fact that for φ<<1 that the particle displacement 

must also be negligible.  If this limit is to be bounded, we expect that 1

1 1; 1n n    and 

2

2 2; 1n n   .   Indeed, in the analytical work developed in [1] we proposed that 

3/2
3/2

1 2 2(1 )


  


  

−
.   The other variables are defined by: 

 

The obvious non-dimensionalization follows as: 

 
** *

0 0

;
U x

t t x
 

= =
      (3) 

While *

0

x
x


=   Applying these expressions to equation (2) gives: 

 

2 * * *
1/2 1

1 2**2 ** **
Re (1 ) (1 )d

p

d x dx dx
C C

dt dt dt






−
  

= + − −   
  

      (4) 

where Red

Ud


 .  We emphasize the physical curtain width is 

* *

0

0

1 1
x

X x X x


= + → = + = +  

 

Examination of the equation (4) indicates that the magnitude of the drag source term for the particle cloud is rela ted  

to the particle volume fraction 
1/2 .   However, this description is incomplete since the rate of change of the drag is 

controlled by the relative velocity terms e.g. 

*

**
(1 )

dx

dt
−  as well.   Here we propose that these relative velocity terms 

are also affected by pa rticle volume fraction.   Indeed, for a small particle volume fraction, we expect that the 

particle cloud dispersion velocity 

*

**

dx

dt
 is enhanced since particle curtain is readily penetrated and exposed to shock 

field.   As such, a modification of the form: 

 

* *

** **
(1 ) (1 )adx dx

dt dt
 −− → −

      (5) 

would seem appropriate.   We need to estimate the power law coefficient “a” and the constant α. 

 

An estimate for the power law exponent α is readily obtained by noting that that the drag term must be valid as 

0 → .   Thus, collecting the highest order terms in in  yields the requirement: 2 1/ 2 1/ 4a a →  .   Thus, 

choosing the largest possible exponent, we select 1/ 4a = .   The constant α is estimated subsequently. 

 

Upon choosing the drag velocity exponent equation (4) can be rewritten as: 
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2 * * *
1 1

1 2*2 ** **
(1 ) (1 )

d x dx dx
c c

dt dt dt
 − − 

= + − − 
 

      (6) 

where 
1

1 1Red

p

c C




−
 

   
 

 and 
2 2

p

c C




 
   
 

 and 
* 1/4 ** 1/4

0

U
t t t 


= = .   Notice that equation (5) is 

invariant with φ when placed in the scaled variable t* which is the scaling used by DeMauro et. al. [1] for the early 

time modeling. 

 

Equation (6) is immediately integrable to give: 

 
* * *2 1

2 1

ln 1 (1 exp( ))
c c

x t t
c c






 
= − − − − 

 
      (7) 

Where 
1

1 1Red

p

c C




−
 

   
 

 and 
2 2

p

c C




 
   
 

 

 

Examination of equation (7) suggests that there two behaviors:    

1. an early time condition and  

2. a la te time asymptotic behavior.    

Let’s examine these conditions in detail.  The early time i.e. t*<<1 trajectory can be written: 

 
* *2

1 2

1
( ) ...

2
earlyx c c t= + +

      (8) 

Which reflects an approximate form of the differential equation of the form:  

 ( )
2 *

1 2*2

earlyd x
c c

dt
 +

      (9) 

Implying that the curvature is related to the dimensionless constants c1 and c2.   Notice that equation (9) is 

independent of the volume fraction when written in terms of 
* 1/4 **t t=  and does not depend on the introduce 

constant α.   We emphasize, that the constants c1 and c2 are related to the drag modeling and can be estimated by 

considering any one of a wide range of empirical or semi-empirical modeling parameter calibration.    

 

 In a similar manner the late time (a symptotic) result can be written  

 
* *

latex t b= +
      (10) 

where b is the y intercept.  

 

While, the one can more easily utilize the near field behavior to provide information for c1 and c2, the magnitude of 

the associated constant α is not as readily achievable.   Let’s examine estimates for this term .   Demanding that the 

slopes of the near field and late time solutions match for time 
*

mt gives: 

 
* *

1 2

1 2

( ) m mc c t t
c c


+ = → =

+       (11) 
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A match of the function then gives: 

 
*2 *

1 2

1
( )

2
m mc c t t b+ = +

      (12) 

Obviously, to proceed we need to estimate b.   Here recognize that the “x” intercept say 
*

it such that 

* *0 i it b b t = + → = −  associated of the linear problem is bounded between 0 and 
*

mt .   Actually, we have more 

information.   The data clearly illustrate that there is a lag period where there is no spreading i.e. 
*x =0 such that 

* 3lagt  .   Thus, we can posit that 
* *3 i mt t  .   With these bounds, we can estimate that an average based on these 

values (we discuss the actual average subsequently) would be a good approximation for 
*

it .   Let’s combine these 

results to give a single expression for α: 

 

2

* *

1 2 1 2

1 2 1 2

1 1
( ) 0 ( )

2 2
i ic c t c c t

c c c c

 
  

   
+ = − → = − +   

+ +   
      (13) 

To use equation (13) we need to estimate 
*

it .   Let’s consider three average definitions: arithmetic, harmonic and 

geometric: 

 
* * * 1/2

_ _ _
1 1 21 2 1 2

1 2
(3 ) ; ; (3 )

2
3

i a i h i gt t t
c cc c c c

 



−

= + = =
++ +

+
      (14) 

Substitution of the arithmetic mean is quickly shown to yield a singular result (the arithmetic mean in not 

independent of the linear approximations used) while the other two can be solved to give:  

 

 

1 2 1 2
1 1 2

1/2

1 2 1 2

1 2

1 2
( ) 0 9( )

2
3

1
( )(3 ) 0 12( )

2

c c c c
c c

c c c c
c c

 




 

−

 
 

− + = → = + 
+

 +
 

− + = → = +
+

      (15) 

As a useful bounding value, we use 
* 3it =  to compute 1 26( )c c = + .   A reasonable choice for the model is to 

use 1 29( )c c = + . 

 

Empirically, we can estimate 1 0.032c = , 2 0.041c = or if we permit 1 2c c=  then 

1 2

1
(0.032 0.041) 0.018

4
c c= = + = .  In figure 1 we compare the results of equation (7) with 

1 29( )c c = + and the estimates for c1 and c2 described here to a regression expression (with selected data points 

included) follow the data of DeMauro et. a l [1]. expressed in terms of the variable 
* 1/4

0

U
t t


= for volume 

fractions ranging from 9% 32%  .   The comparison between the model for the various values of  for c1 and 
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c2 is good suggesting that the proposed solution procedure is appropriate.   Notice that 

1 29( ) 0.66c c = +  implying that the late time particle velocity is 

*

*

dx

dt
= .   This statement is consistent with 

a post-shock velocity reduction. 

 

 

Figure 1.   Comparison between equation (6) with 1 29( )c c = + and the estimates for c1 and c2 and the data of 

DeMauro et. al. [1]  suggesting that the proposed modeling approach may be generally viable. 

 

The preceding analysis provides a useful estimate for the constants associated with drag expressions.   The actual 

model constants, c1 and c2 we estimated by comparison with available data sets.   There are approaches that  ca n  be 

used to estimate these constants themselves.   These techniques require formulating functionally similar solutions 

with associated supporting parameters that are to be determined.   Then, by demanding coincidence of the two 

functional expressions, constraint equations can be formulated that provide estimates for the associated param eters.  

Generally, supposition of appropriate, linearly independent functional forms that are analogous, is challenging.   

Here, however, there two solution immediately available corresponding to linear models  (denote as 
*

lx )  and 

quadratic models (denoted as
*

qx  for the drag.   We can write them as: 

 

2 * *

1 2

*2 *

2 * *
1

*2 *

(1 )

(1 )

q q

l l

d x dx
A

dt dt

d x dx
B

dt dt





−

−

= −

= −

      (16) 
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Though written using the constants “A” and “B” the correspond  as: 
2 12 ; 2A c B c  .   Solution to both 

expressions is trivial as: 

 

*
* *

* * *

ln( )

(exp( ) 1)

q

l

At
x At

A

B
x Bt t

B

 









 +
= − 

 

 
= + − − 

 

      (17) 

Following our “prescription” we now as for equivalency between these to expressions.  There are many possible 

constraints that we can use to achieve similar behavior.   A t raditional requirement, for example, is to require: 

* * * *

0 0

q lx dt x dt

 

=  , unfortunately, these results are unbounded forcing us to consider other alternative.   A 

particularly simple constraint is to ask that the two results equal for a particular va lue, which is called collocation.   

Of course, choosing a particular value for equality is difficult, but a possible scale is 
* 1t A −= .   Using this value, 

we can solve the associated nonlinear expression 
* 1 * 1( ) ( )q lx A x A − −= .   The equation can be solved exactly, 

but is best represented by as: 0.7840B A= since the algebra is complex.   The absence of the α term follows from 

the equation and is exact.   We note that this expression is consistent with 1

2

2 0.032
0.781

2 0.041

B c

A c
=  = where we 

have used our empirical estimates for c1 and c2. 

 

Obviously, the current expression, fails to offer an explicit value for A and we need to invoke another constraint.   A 

second viable constraint is challenging, since the collocation at a  second point will yield a set of expressions with no 

possible solution.   Indeed, one of the challenges of this approach is to identify nonlinear expressions that are non -

trivial.    A constraint that is readily available and is bounded for t*>>1 is the acceleration 

2 *

*2

d x

dt
.   Thus, a  

particularly useful constraint is to require matching at a  point (say t*=T*) as 
* ** *

2 * 2 *

*2 *2

q l

t Tt T

d x d x

dt dt
==

= .   As before, 

we need to choose an appropriate estimate for the match point.   An obvious choice is simply, 
* 1t A −= .   

Unfortunately, utilization of this time scale does not yield a solution, since the closure is not sufficiently independent 

of our previous analysis.   We could alternatively, choose a different scale say, 
* 2t A −= .   This approach is viable 

and indeed, we can solve for an explicit value of A.   A more general approach is to examine a range of closures 

such as: 
*t A  −= where γ=1/2,1, 3/2, 2…   We present these results in table 1. 

 

Time scale coefficient Solution A 
2 / 2c A  

γ=1/2 0 0 

γ=1 0 0 

γ=3/2 0.0789 0.0394 

γ=2 0.2808 0.1404 

 

Table 1.  Estimates for model coefficient for several time scale closures (collocation locations). 

 



 

American Institute of Aeronautics and Astronautics 

 

8 

Examination of the c2 parameter estimate for γ=3/2 in table 1 i.e. 
2 / 2 0.0394c A  and 

1 0.781(0.0394) 0.0308c = =   as compared with the empirical result obtained previous: 
1 0.032c =  and 

2 0.041c = demonstrates good agreement, suggesting that the parameter estimates are likely reasonable. 

 

With access to the closure constants described previously, there is value in rewriting equation (5) in dimensional 

form.   Using the previous definitions, we write: 

 

2
2 1/ 4 1/ 4 1/ 4

0 1 22

1 2 1 2

2 1/ 4 1 1/ 4 1/ 4

1 2

1 2 1 2

1 1 1 1
( ) ( )

9( ) 9( )

1 1 1 1
Re ( ) ( )

9( ) 9( )
d

p p

d x dx dx
U c c

dt c c U dt c c U dt

dx dx
U C C

c c U dt c c U dt

    

 
   

 

−

 
= + − − 

+ + 

    
= + − −    

    + +    

      (18) 

 

The definitions in second line of equation (17) are useful since the gas to solid particle ratio is explicitly included.   

Since the model was derived for and air soda glass problem we can estimate: 
3(10 )

p

O




−
 

=  
 

so that the 

constants in equation (17) are: 
1 3

1Re (10 )0.032 32d C O−  = and 
3 3

2 2(10 ) (10 )0.041 41C O c O = =  

implying that: 

 

2
2 1/4 1/4 1/4

0 2

1 1
32 41( 1.52 ) ( 1.52 )

p

d x dx dx
U

dt U dt U dt


    



  
= + − −     

      (19) 

Equation (19) provides a reasonable estimate for a drag law closure.   Notice that the late time particle curtain 

velocity is given by: 
1/ 40.66

dx
U

dt
= . 

 

 

III. Streamwise Pressure Difference Shock Particle Curtain Dispersion Models 

 

 

As described previously, an upstream-downstream pressure difference model, analogous to the pressure drop over a 

screen which provides a formulation for the force loading dynamics of particle curtain that is more directly applied 

to the particle curtain as whole as compared to the drag-based formulation.  A particularly relevant description of 

this problem is provided by Daniel and Wagner [2] who discuss analysis and measurements for the shock-particle 

interaction problem.   An empirical result (equation (1)) from that study suggests that the pressure difference that 

causes dispersion of the associated with the particle curtain can be described by  repeated as equation (20)): 

 
1/ 2 2

1 2 ; 9.6u d meas measp p C u C − = =
      (20) 

Measurements from Daniel and Wagner demonstrate the efficacy of equation (1).  Notice that this pressure gra d ien t  

is directly utilized in a particle curtain drag formulation of the form:

2

0 2
( )p P u d

d x
A F A p p

dt
  =  −

and that 

a volume fraction weighting term is externally included in the right-hand-side of the force balance model. 



 

American Institute of Aeronautics and Astronautics 

 

9 

 

While useful as written, there is value in ascertaining the connection between the empirical closure for equation (1) 

and classical theory.  A successful analogy between particle curtain behavior and pressure drop associated with 

compressible flow over screens (wire mesh gauzes) was utilized by DeMauro et. al. [1].   In that effort, particle 

volume fraction behavior for the drag/pressure drop associated with particle curtain was ascertained by examinatio n  

of several closures discussed by Pinker and Herbert [3] and was shown to provide a useful scaling behavior for 

curtain particle trajectories.   However, DeMauro et. al. did not seek to ascertain the magnitude of the pressure 

difference, which is required to assess the empirical constant in equation (1). 

 

Pinker and Herbert examine a range of closure models for incompressible pressure drop associated with wire gauzes 

to write the expression: 

 
2

0 2 2 0 0

1
; ( )

2
p u     = =

      (21) 

Where the incompressible function 
0( )  is given by a range of models such as: 

 

2

0 0 0 02

1 (2 )
( ) ; 0.5

(1 )
c c c

  
 

 

− −
 = 

−       (22) 

A particularly convenient representation of the volume fraction expression 
2

(2 )

(1 )

 



−

−
written for 0<φ<0.5 can be 

determined using: 

 

0.5 0.5

3/ 2

2

0 0

(2 )
5 2 7

(1 )
const d d const

 
  



−
= → = 

−        (23) 

such that we can write: 
3/ 2

0 ( ) 3.5    

 

While the pressure drop relationships described previously are viable for low-speed flow, the problem class of 

interest is decidedly compressible, and indeed, Pinker and Herbert describe extensions to the model to account for 

the increase in drag associated with compressible behavior.  The behavior for compressible flow is rather more 

complex due to the potential for choked flow behavior.  Indeed, for choked behavior o ne can observe a dramatic 

increase in the associated pressure drop.   Local choking is driven by the particle curtain geometry with an increase 

in likelihood of choked behavior for φ→1 and for higher speed behavior in the local flow field M 0→1.   We 

emphasize that M0 is the upstream of the screen/mesh/particle curtain and that M*=M0 when the flow chokes in  the 

mesh/particle curtain. 

 

Pinker and Herbert [3] and [4] discuss the pressure drop (drag) for compressible flows through screens.   As 

indicated, this process is a function of the local Mach number and particle volume fraction.   The compressibility 

enhancement factor for Cdrag is modeled via: 

 

*

*

_ 0

1/ 7

b

drag

drag inc

C M
b

C M M

 
=  

− 
      (24) 

Obviously for 
*

2M M→ the pressure drop will be very large which is physically confirmed by the measurements 

of both [3] and [4].  To use equation (24) we need to be able to estimate the choking Mach number 
*M .    A good 
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approximation to 
*M  can be obtained using simple isentropic theory via the classical Mach number area 

relationship where the area ratio is a function of the particle volume fraction.   This expression is simply:  

 

1

2(1 )
* *22 1

(1 ) 1
1 2

M M








+

− −
+ = − 

+ 
      (25) 

Obviously for 
*0 1M = = .   Equation (11) is implicit for M* which is inconvenient, but can be remedied by a 

simple approximation (valid for γ=1.4) 

1

2(1 )
* *2 *2/32 1

(1 )
1 2

M M M







+

− −
+  

+ 
whereby we can approximate: 

* 3/2(1 )M = − .  Equation (5) then becomes: 

 

3/2

3/2

_ 2

(1 )
1/ 7

(1 )

b

drag

drag inc

C
b

C M





 −
=  

− − 
      (26) 

The result of equation (26) can be presented in a plot of 

_

drag

drag inc

C

C
 as a function of M2 as shown in figure 2.   The 

results demonstrate the strong increase in drag associated with choking in the particle curtain. 

 

Figure 2. plot of the compressibility effect on drag 

_

drag

drag inc

C

C
.   Note the large increase as the Mach number 

approaches the choking Mach number M* 

 

While equation (7) correctly deduces the large increase associated with  choked flow, it is unfortunately not bounded, 

and thereby, cannot provide an upper limit for enhancement associated with the choke flow behavior.   An est im a te 

for the pressure drop across the screen choked flow is necessary. 

 

The screen pressure drop is a characteristic of irreversible flow behaviors (weak shocks, turbulent mixing etc.) and is 

typically estimated empirically.   A special case where analytical estimates are viable, however, is the so -called 

rapid expansion problem, a very well-known and classical problem associated with incompressible minor head 

losses.   Indeed, the pressure drop (head loss) expression for the rapid expansion from a constriction area ratio: 
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2

1

1
A

A
= − yields 

2 2 2

2

2
2 1

1
1 1

1 1 (1 )

2

p A

A
u



 

   
= − = − =   

− −  
 (See appendix for details.).   Further, while 

involved, a compressible formulation for this pressure drop is possible as well, which we derive in detail in the same 

appendix.  Therefore, while the specific magnitude of this pressure drop model is insufficient to describe the screen 

drag problem, the ability to compute an analytical estimate for both compressible flow and incompressible pressure 

drop and thereby provide an estimate for 

_

drag

drag inc

C

C
ratio.   This ratio may then in turn be used a s an approximation 

for a compressibility correction factor for the more general choked screen problem.    

 

The compressible extension for the rapid expansion problem, while algebraic, does not have a closed form solution 

and is perhaps best examined for a  range of discrete values.   These values in turn support a simple regression 

analysis (for γ=1.4) to give the simple expression: 

 
*

4/5

_ 1

1.7 0.1 0.5
drag

drag inc M

C

C
 −

=

  
      (27) 

We can plot the result in figure 2.   Further an average value is readily obtained as: 

1

4/5

_ 0.1

1.7
3.5

1 0.1

drag

drag inc ave

C
d

C
 −= 

−  . 

 

Figure 3.   Comparison between exact numerical solutions and analytical approximation for 

_

drag

drag inc

C

C
 for rapid 

expansion problem. 

 

Finally, equation (20) is based upon the pre-shock density ρ1, whereas the formulation developed here uses the post -

shock value ρ2.   The shock density ratio is computed as: 
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2

12

21

1

1
1

1

1

1

p

p

p

p









 +
+  

−  =
+

+
−

      (28) 

which can be related to the shock speed through: 
2 2

1

1
1 1

2
s

p
M

p





 +
= − + 

 
.   The measurements performed to 

support equation we for relatively weak shocks: 1<Ms<1.7 so that taking an integral average: 
1.7

2 2

1 11

1
1.6

1.7 1
s

ave

dM
 

 
= =

−   

 

Using the preceding expressions, we can then estimate the pressure difference for the particle curtain problem as 

described by equation (20).   As a starting point we emphasize that the pressure difference for equation (20) has been 

weighted by φ, whereas the screen drag expression has not and should be directly applied without this term as:  
2

0 2p

d x
A A p

dt
  =  .   

 

 Let’s assemble the components for the pressure difference model:  

• Incompressible term: 
3/ 2 3/ 2

0 0 0( ) 7 3.5 ; 0.5c c    =   

• Choked flow correction: 

_

3.5
drag

drag inc ave

C

C
  

• Density ratio

1.7

2 2

1 11

1
1.6

1.7 1
s

ave

dM
 

 
= =

−   

 

Using these expressions, we then write: 

 
2 3/2 2 3/2 22

0 1 2 1 2 1 2

_ 1

1
( ) (3.5 )(3.5)(1.6) 9.8

2

drag

drag inc aveave

C
p u u u

C


      



  
  = = = 

  
  

      (29) 

which is in good agreement with the Daniel and Wagner [2] empirical result 9.6measC = .  

 

Obviously, there is a considerable degree of approximation inherent to the current approach  and we can at best off er 

that the current estimates for the constants provide an order of magnitude correct value.   For example, by cha ngin g 

the range of approximation or integration average, we could write:  

• Incompressible term: 

0.6 0.6

3/ 2

2

0 0

(2 )
8.1

(1 )
const d d const

 
  



−
= → 

−  such that
3/ 2

0( ) 4    

• Choked flow correction 

1

4/5

_ 0.01

1.7
5.2

1 0.01

drag

drag inc ave

C
d

C
 −= 

−   

• Density ratio

2

2 2

1 11

1
1.8

2 1
s

ave

dM
 

 
= =

−   
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These modified values would in turn 
3/ 2 2 3/ 2 2

1 2 1 2

1
(4 )(5.2)(1.8) 18.7

2
p u u    = = larger by a factor of two as 

compared to the empirical result.  Nonetheless, the formulation structure offers a plausible approach to support the 

relationship between streamwise pressure drop across the particle curtain as related to the dynamic pressure. 

 

In summary, the modeling associated with this pressure drop closure is largely approximate but there appears to be a  

plausible argument to support the connection between the screen drag pressure drop models and the particle curtain 

behavior.  More broadly, there is a supportable argument that pressure difference models and drag-based approaches 

are closely related. 

 

IV. Conclusion 

 

The focus of this study has been to examine particle curtain dispersion modeling approached based on drag closures 

and their relationship to streamwise pressure difference formulations.  We specifically showed that scaling 

arguments developed in DeMauro et. al. [1] using early time drag modeling could be extended to include late time 

particle curtain dispersion behavior by weighting the dynamic portion of the drag relative velocity e.g. 

1/4( ) ( )
dx dx

U U
dt dt

 −− → −  by the inverse of the particle volume fraction to the ¼th power.   The addition of 

extra  parameters in the formulation was estimated by employing an early-time late-time matching argument.    

Similarly, estimates for the drag law closure constants were estimated using a functional approximation/collocation 

method.  Comparison with the scaled measurements of DeMauro et. al. suggest that the proposed modification is a n  

effective formalism.   

 

The second portion of the discussion examined the connection between drag-based models and streamwise pressure 

difference-based expressions.  This effort involved formulating simple analytical models that verify a  successful 

empirical (Daniel and Wagner [2]) upstream-downstream expression.   Using a screen pressure drop analog, 

extended to include compressible flow choking effects, it was possible to directly show the relationship between 

classical drag and pressure difference models.  Though simple, these models provide physics-based approached 

describing shock particle curtain interaction behavior and help elucidate that physics associated with this complex 

phenomenon. 

V. Appendix: Compressible Rapid Expansion Pressure Loss Model 

 

Here we derive expressions describing pressure drop through a sudden expansion for compressible flow.   This 

model is used as a surrogate for screen loss behavior, which in turn is related to particle curtain losses.  

 

Incompressible Flow 

 

Considering the plate and sudden expansion problems with the notation suggested: 

   
 

2 0 
1 

http://en.wikipedia.org/wiki/File:Flow_expansion.svg
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we can compute the pressure drop between stations (1) and (2) using the sudden expansion approximation via the 

momentum equation to write the pressure drop as: 

 
)1()(

1

22

021212 −=−=−
A

A
uuuupp 

      (A.1) 

Where we have used: 
20221100 ; AAuAuAuA === .   To eliminate the pressure at the orifice plate we 

assume a lossless behavior between location “0” and location “1” whereby Bernoulli’s equation and continuity give: 

 
)1(

2

1
2

1

22

001 







−+=

A

A
upp 

      (A.2) 

We can thus compute 
20 2 2

2 1
0

( )
( 1)

1

2

p p A

A
u

−
= − and for 2

1

1

1

A

A 
=

−
 we have 

2

0 2

2
2

0

( )

1 (1 )

2

p p

u





−
=

−
 

 

Compressible Flow 

 

The formula tion for the compressible problem is broadly similar to the incompressible problem.   Focusing on the 

irreversible portion of the flow between location “1” and “2” we write the same type of conservation formation as: 

mass: 

 222111 AuAu  =
      (A.3) 

momentum: 

 222

2

22112111

2

11 )( ApAupAAApAu +=−−+ 
      (A.4) 

and energy: 

 0222201111 TcAuTcAu pp  =
      (A.5) 

Note, that for adiabatic flow 01 02T T=  We simplify the momentum equation and then divide through by 
1

2

11 Au .   

Recognizing that (regardless of subscript) that 
22

1

Mu

p


= we now have: 

 
( )2

2

1

2

2

2

2

12

1

1

2 1 M
u

u

M

M
M

A

A
 +
















=+









      (A.6) 

Let’s square both sides of equation (A.6) and examine the term: 

2

1

2










u

u
.   We can relate this velocity ratio to the 

temperature through the Mach number definition as: 
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 















==

1

2

2

1

2

2

1

2

1

2

2

2

2

1

2

2

T

T

M

M

RTM

RTM

u

u




      (A.7) 

Now, we need to eliminate 








1

2

T

T
.   We use the energy equation and the total temperature definition: 

20

2

1
1 M

T

T −
+=


 to eliminate 








1

2

T

T
: 

 








−
+

−
+

=
01
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2

2

2

1

1

2

2

1
1

2

1
1

T

T

M

M

T

T





      (A.8) 

Thus the velocity ratio becomes: 

 



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
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2
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1
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      (A.9) 

 

So put it all together in: ( )22

2

2

1
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2 1 M
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 and collect terms to yield: 
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      (A.10) 

This expression is the same as that described in Shapiro [5]   If we ignore the heat transfer 1
01

02 =
T

T
.   To utilize 

equation (A.10) we need to estimate M1 in terms of M0.  Following the zero energy loss estimate (Bernoulli’s 

equation) from the incompressible formulation we assume a similar isentropic model as simply write: 

 
1

2

)1(2/)1(

2

1
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1
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      (A.11) 
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Equations (10) and (11) provide a method to estimate the downstream Mach number, i.e. M 2 given the passage of 

the flow through the orifice described by the 2

1

A

A
ratio.   The next step is to compute the pressure drop for this 

problem. 

 

We can use the preceding equations to compute the drag coefficient 0 2 0 1 2 1

2 2

0 0

( ) [( ) ( )]

1 1

2 2

p p p p p p

u u 

− − − −
= . 

While it is possible to compute the downstream pressure p2 using the Mach number at location “2”, the total 

temperature and state, the result is not well posed for incompressible flow and is thus not particularly useful.   An 

alternative formulation that more closely mimics the incompressible formula is preferred.   Using the momentum 

equation (along with state) we compute: 

 
)1(

1

2

2

12

1121 −=−
u

u

A

A
upp 

      (A.12) 

We can express the velocity ratio in terms of the Mach numbers as: 
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.   Using 

continuity between location “1” and location “0” we can write: 
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==




 we can then write: 
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      (A.13) 

The Mach number terms in this expression are specified previously.   To compute the drag we also need access to 

2
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since we will compute the drag using
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= .   Since the flow 

is isentropic between location “0” and “1”  so that we can write: 
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      (A.14) 

Equations (A.13) and (A.14) provide access to the pressure loss K with K defined by K=Equ(A.14)-Equ(A.13). 

 

Since we have derived these expressions with the idea that they will correctly recover M=0 behavior we consider the 

limiting behavior.  Equation (A.14) simplifies as: 
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While equation (A.13) becomes: 
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Thus 
2 20 1 2 1 2 2 2

2 2 1 1 1
0 0

( ) ( )
( ) 1 [2( 1)] ( 1)

1 1

2 2

inc

p p p p A A A
K

A A A
u u 

− −
= − = − − − = − which is the expected result with  

 

An important limiting case is associated with the preceding discussion, namely, where flow in the pore system is 

choked, i.e. M1=1.   Under these conditions the upstream Mach number is no longer a free parameter for steady flow 

but is defined by equation (14) through: 

 

(1 )/ 2( 1)

2 2
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0 1

1 2 1 1
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M A

 

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+ − 
      (A.17) 

In a similar manner, equation (A.10) and the pressure drop expressions, i.e. equations (A.13) and (A.14)  can be 

utilized by simply replacing M1=1. 

 

As stated previously, the magnitude of the current pressure drop model is of rather less importance relative to 

providing an estimate for the ratio of choked flow compressible pressure drop to the incompressible value i.e. 

_

drag

drag inc

C

C
.   This ratio is readily computed as: 

 
1 11 1
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_
2

( .14) ( .13)

(1 )

M Mdrag

drag inc

equ A equ AC

C 
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= =
−

=

−

      (A.18) 

Equation (18) is the main result of the appendix and provides an estimate for the increase in drag associat ed with 

choked flow behavior.   Note that for 1.4 = (most usefully) that equation (A.18) is a (complex) function of 

 only.   This fact is leveraged to compute equation (8). 

 

The expression provided in equation (8) in the text and equation (A.18) are useful (and correct) as written, but may 

be misleading.   Examination of equation (8) seems to suggest that 

_

drag

drag inc

C

C
is unbounded for small volume 

fraction φ.   Indeed, as written, this is true, and there is value in examining why and how this behavior occurs.   Let’s 

then examine the formulation of the problem for φ<<1. We will use 7 / 5 =   The expressions we need are 
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equation (A.11) with 2 2

1 1

1
1

1

A A

A A



= → = +

−
and the corresponding expression for the upstream Mach number 

M0 is solvable as: 
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30
1 ..

5
M = − +

      (A.19) 

A similar computation is possible for equation (A.10) which yields the down stream Mach number M2 as: 

 
1/ 2 3/ 2

2

30 30
1 ...

5 16
M  = − + +

      (A.20) 

With these solutions, the preceding for the numerator of equation (A.18) is readily solvable as: 

 1 1

3/ 2

1 1

47 30
( .14) ( .13) ...

144
drag M M

C equ A equ A 
= =

= − = +
      (A.21) 

Let’s now examine the behavior for denominator, i.e. the incompressible drag for φ<<1 which gives: 
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−       (A.22) 

We immediately detect the unbounded behavior for 
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as be proportional as 
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drag
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C

C


 −



 ; 

obviously the choked flow limit for φ<<1 and the incompressible limit for φ<<1 behave differently.   While this 

behavior causes unboundedness of the ratio of the choked drag to incompressible drag for φ<<1, the actual value 

(unscaled) 
3/ 2 3/ 247 30

1.8 ...
144

dragC  =  +  is consistent with the closure described previously: 

3/ 2

0 ( )   . 
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