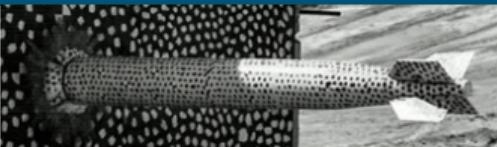


Multiscale geometric mechanics formulations for GFD parameterization



Presented by:

Chris Eldred (SNL)*, Thomas Dubos (LMD)

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

The equations of GFD

- For fully resolved scales (micro/DNS scale, approx $O(1)$ cm), the equations of GFD are well-understood*, ex. compressible Navier-Stokes-Fourier:

$$\frac{\partial \mathbf{v}}{\partial t} + \nabla \times \mathbf{v} \times \mathbf{u} + \alpha \nabla p + \nabla \phi = \frac{1}{\rho} \nabla \cdot \boldsymbol{\sigma}^{\text{fr}}$$

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{u}) = 0$$

$$\frac{\partial S}{\partial t} + \nabla \cdot (S \mathbf{u}) = \frac{1}{T} (\boldsymbol{\sigma}^{\text{fr}} : \nabla \mathbf{u} - \nabla \cdot (T \mathbf{j}_s))$$

- Key feature of these equations is **physical consistency**:
 - conservation of energy by both **reversible** and **irreversible** processes (1st law of thermodynamics)
 - conservation of thermodynamic entropy by **reversible** processes and generation of thermodynamic entropy by **irreversible** processes (2nd law of thermodynamics)

*- multi-component flows with condensed phases are still an area of active research

The problem of parameterization

- Cannot afford to run numerical models for GFD at fully resolved scales ($O(1)$ cm): instead we run at $O(100)$ m at best (usually much coarser)!
- Scale mismatch leads to problem of parameterization: how to represent the effects of unresolved scales on the resolved scales = multiscale models
- Some modern approaches in GFD:
 - superparameterization/multiscale modeling framework (MMF)
 - higher-order closure models such as SHOC/CLUBB
 - scale aware models such as eddy diffusivity/mass flux (EDMF)
- Unfortunately, these approaches to this problem break physical consistency

How can physically consistent parameterizations be developed?

Step back: what underlies physical consistency in fully resolved equations?

Geometric mechanics formulations

- Geometric mechanics formulations (Lagrangian/variational, Hamiltonian, single + double generator bracket, metriplectic, GENERIC) provides a framework to understand physical consistency
- The key elements are:
 - A set of degrees of freedom x
 - A *Lagrangian* $\mathcal{L}[x]$ with associated Hamiltonian $\mathcal{H}[x]$: (essentially) the sum of all the relevant energies in the system ex. kinetic, potential, internal, etc.
 - An entropy $\mathcal{S}[x]$: the sum of all the relevant entropies in the system
 - A dissipation potential $\Phi[x]$: The rate at which irreversible processes generate entropy
- These pieces can be combined to get both reversible and irreversible dynamics
- In the end they just express the exchange of energy and entropy between various reservoirs: kinetic, internal, potential, etc.

Physical consistency in geometric mechanics formulations

- Reversible dynamics come from a *variational principle* applied to Lagrangian $\mathcal{L}[x]$, with associated *Hamiltonian* formulation:

$$\delta \int_{t_1}^{t_2} \mathcal{L}[\mathbf{x}] = 0 \quad \frac{d\mathcal{F}}{dt} = \{\mathcal{F}, \mathcal{H}\}$$

- Irreversible dynamics come from a *constrained variational principle* (by dissipation potential $\Phi[x]$) applied to Lagrangian $\mathcal{L}[x]$, with associated bracket (*single/double generator, metriplectic, GENERIC*) formulation:

$$\delta \int_{t_1}^{t_2} \mathcal{L}[\mathbf{x}] = 0 \quad \frac{d\mathcal{F}}{dt} = \{\mathcal{F}, \mathcal{H}\} + (\mathcal{F}, \mathcal{S})$$

- Physical consistency is built in through symmetries in the Lagrangian $\mathcal{L}[x]$ and properties of $\Phi[x]$: ensures that Poisson brackets $\{\cdot, \cdot\}$ and metric brackets (\cdot, \cdot) have the appropriate properties

These formulations describe all physically consistent equations in GFD, at fully resolved scales. What about multiscale approaches?

Multiscale geometric mechanics formulations

Key Idea: Introduce degrees of freedom to (partially) describe the unresolved (subgrid, represent subgrid variability) scales: x' , use these to develop the key elements of geometric mechanics formulations: \mathcal{L} , \mathcal{S} , Φ

Specifically:

- Express physical quantities in terms of resolved \bar{x} and unresolved x' parts
- Parameterize averaged $\hat{\mathcal{L}}[\bar{x}, x']$ Lagrangian and dissipation potential $\hat{\Phi}[\bar{x}, x']$ in terms of resolved \bar{x} and unresolved x'
- Apply usual techniques (constrained variational principle) on $\hat{\mathcal{L}}[\bar{x}, x']$ and $\hat{\Phi}[\bar{x}, x']$ to get equations of motion for both resolved and unresolved dofs
- Physical consistency is "built in" if appropriate symmetries and properties are preserved in $\hat{\mathcal{L}}[\bar{x}, x']$ and $\hat{\Phi}[\bar{x}, x']$

Difficulty is in choice of appropriate \bar{x} and x' , and how to construct $\hat{\mathcal{L}}[\bar{x}, x']$ and $\hat{\Phi}[\bar{x}, x']$. Some ideas are given in the next few slides

0th Order Model

- No subgrid dofs: $x' = 0$
- No irreversible processes: $\hat{\phi} = 0$
- Lagrangian takes same form as fully resolved case: $\hat{\mathcal{L}}[\bar{x}]$ is just $\mathcal{L}[x]$ with x replaced by \bar{x}

$$\frac{\partial \bar{\mathbf{v}}}{\partial t} + \nabla \times \bar{\mathbf{v}} \times \bar{\mathbf{u}} + \bar{\alpha} \nabla \bar{p} + \nabla \bar{\phi} = 0$$

$$\frac{\partial \bar{p}}{\partial t} + \nabla \cdot (\bar{\rho} \bar{\mathbf{u}}) = 0$$

$$\frac{\partial \bar{S}}{\partial t} + \nabla \cdot (\bar{S} \bar{\mathbf{u}}) = 0$$

This is the usual starting point for dynamical cores in GFD, with "physics" added to the right-hand side in a somewhat arbitrary manner that breaks physical consistency and requires the use of fixers

1st Order Model

- No subgrid dofs: $x' = 0$
- Treat subgrid processes using same form as physically irreversible processes: $\hat{\Phi}[\bar{x}]$ is just $\Phi[x]$ with x replaced by \bar{x}
- Lagrangian takes same form as fully resolved case: $\hat{\mathcal{L}}[\bar{x}]$ is just $\mathcal{L}[x]$ with x replaced by \bar{x}

$$\frac{\partial \bar{\mathbf{v}}}{\partial t} + \nabla \times \bar{\mathbf{v}} \times \bar{\mathbf{u}} + \bar{\alpha} \nabla \bar{p} + \nabla \bar{\phi} = \frac{1}{\bar{\rho}} \nabla \cdot \bar{\sigma}^{\text{fr}}$$

$$\frac{\partial \bar{p}}{\partial t} + \nabla \cdot (\bar{\rho} \bar{\mathbf{u}}) = 0$$

$$\frac{\partial \bar{S}}{\partial t} + \nabla \cdot (\bar{S} \bar{\mathbf{u}}) = \frac{1}{\bar{T}} \left(\bar{\sigma}^{\text{fr}} : \nabla \bar{\mathbf{u}} - \nabla \cdot (\bar{T} \bar{\mathbf{j}}_s) \right)$$

with $\bar{\sigma}^{\text{fr}}$ and $\bar{\mathbf{j}}_s$ parameterized in terms of \bar{x} in essentially the same way as NSF equations (i.e. using *thermodynamic forces* adapted to vertical/horizontal split)

This is an approach pioneered by Almut Gassmann: the 1st (to my knowledge) physically consistent treatment of physics parameterizations

Issues with 1st Order Model and moving beyond it

- \mathcal{L} (and entropy) are highly nonlinear functions of \mathbf{x} : $\mathcal{L}[\mathbf{x}] \neq \mathcal{L}[\bar{\mathbf{x}}]$
- $\mathcal{L}[\bar{\mathbf{x}}]$ has only resolved energy reservoirs (similar for $\mathcal{S}[\bar{\mathbf{x}}]$)
- Most subgrid processes in the atmosphere and ocean are unresolved reversible processes: different mechanics and types of energy and entropy exchanges than irreversible processes
- Can we do better? We think so! How?
 - Add TKE and TPE to $\mathcal{L}[\bar{\mathbf{x}}, \mathbf{x}']$, parameterized in terms of new unresolved dofs that represent subgrid variability: ex. entropy variance $(\theta')^2$, moisture variance $(q_v')^2$, Reynolds stress tensor \mathbf{R} , etc.
 - Use a dissipation potential $\Phi[\bar{\mathbf{x}}, \mathbf{x}']$ parameterized in terms of these new unresolved dofs
 - Some important progress for kinetic energy, with Reynolds stress tensor \mathbf{R} serving as new subgrid dof
 - Internal/potential energy parts are much trickier, subject of current work by Thomas and myself

Model with Stress Tensor

- Add turbulent kinetic energy $\rho \kappa$ to \mathcal{L} , with $\kappa = \frac{1}{2} \text{Tr} \mathbf{R}$
- Assume \mathbf{R} is advected (Lie-dragged) by the flow

$$\frac{\partial \bar{\mathbf{v}}}{\partial t} + \nabla \times \bar{\mathbf{v}} \times \bar{\mathbf{u}} + \bar{\alpha} \nabla \bar{p} + \nabla \bar{\phi} + \nabla \cdot \mathbf{R} = 0$$

$$\frac{\partial \bar{p}}{\partial t} + \nabla \cdot (\bar{\rho} \bar{\mathbf{u}}) = 0$$

$$\frac{\partial \bar{S}}{\partial t} + \nabla \cdot (\bar{S} \bar{\mathbf{u}}) = 0$$

$$\frac{\partial \mathbf{R}}{\partial t} + \nabla \cdot (\mathbf{R} \otimes \bar{\mathbf{v}}) + (\mathbf{R} \cdot \nabla) \bar{\mathbf{v}} + (\mathbf{R}^T \cdot \nabla) \bar{\mathbf{v}} = 0$$

Progress: Now there is reversible exchange of energy between resolved reservoirs and turbulent/subgrid reservoir of TKE ($\rho \kappa$). This model is missing, however, irreversible source and diffusion terms on the rhs of the \mathbf{R} equation, and corresponding terms in the entropy equation. These amount to adding a proper definition of dissipation potential Φ .

Summary and Conclusions

Ultimate goal: Multiscale formulation for (geophysical) fluid dynamics with consistent exchanges between resolved/unresolved reservoirs of energy and entropy = **a physically consistent approach to parameterization**

- Multiscale geometric mechanics formulations provide a powerful tool for realizing this goal
- Many questions and a lot of work remains, for example:
 - What are the appropriate choices of resolved and unresolved dofs?
 - How should Lagrangian $\hat{\mathcal{L}}$ and dissipation potential $\hat{\Phi}$ be formulated in terms of these dofs?
 - How much of $\hat{\Phi}$ should represent true physically irreversible processes and how much subgrid turbulent (=reversible) dynamics?
 - How does this approach connect to state of the art parameterizations such as the multiscale modeling framework (MMF) and higher-order closure schemes ex. SHOC/CLUBB?