

*Exceptional
service
in the
national
interest*

**Sandia
National
Laboratories**

Using Containers and Automatic Provenance Collection for Sustainable Scientific Software

Jay Lofstead

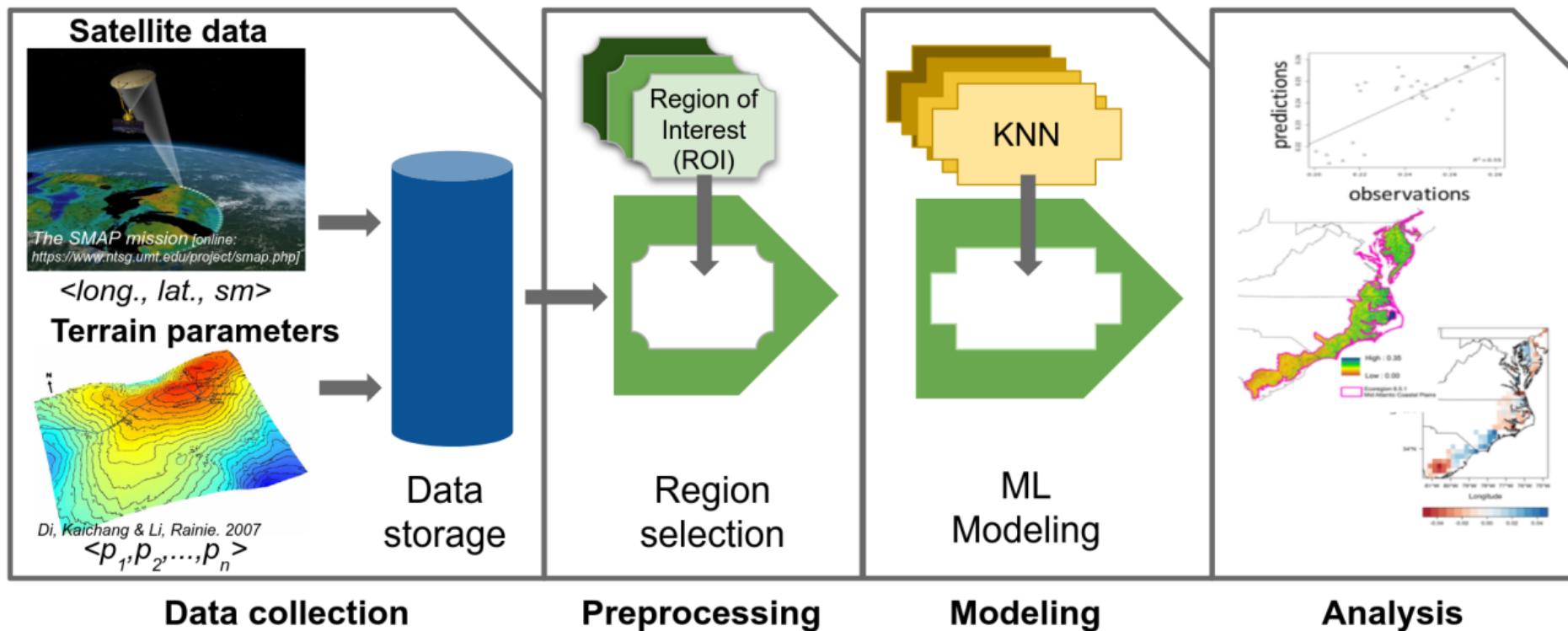
ASC Sustainable Scientific Software
Conference

25 May 2022

U.S. DEPARTMENT OF
ENERGY

National Nuclear Security Administration

SAND # HERE


Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Project Context

- Paula Olaya ; Leobardo Valera ; Ricardo Llamas ; Rodrigo Vargas ; Jay Lofstead; Michela Taufer, “Building Trust in Earth Science Findings through Data Traceability and Results Explainability”, under review at ACM Transactions on Parallel and Distributed Systems
 - Paula’s MS thesis (on arXiv)
- Builds upon Data Pallets work published in 2019

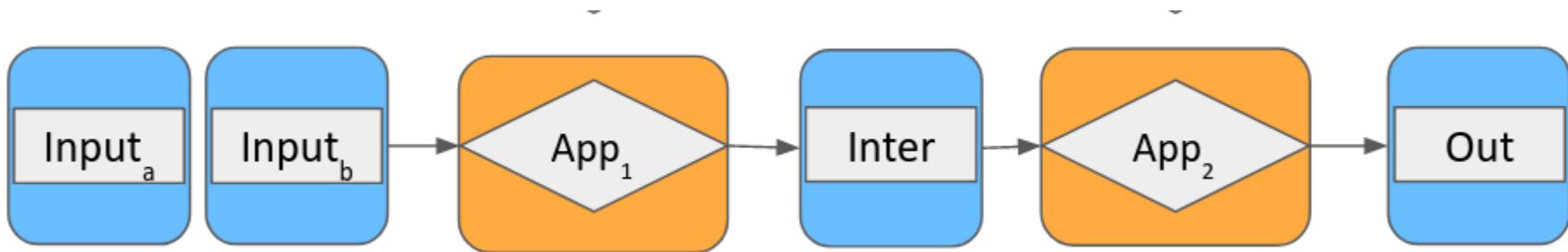
Process example

- SOMOSPIE workflow uses any of four different ML algorithms to extrapolate satellite measurements to different, finer-grained resolution for soil moisture and visualizes the results

Sustainability Problems

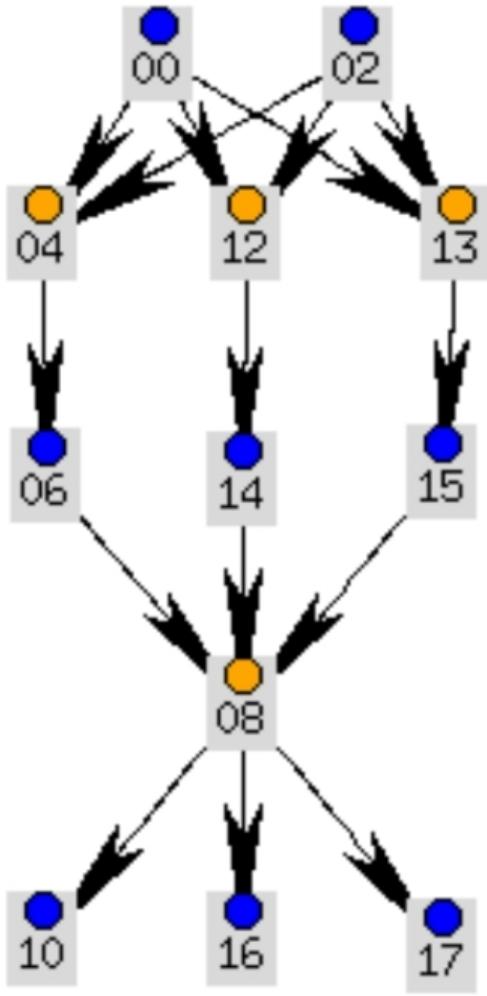
- How do we know what algorithm was used to create which output?
- What parameters were used to process the data to generate the output?
- How do we enable linking the processed data back to the original source and all processing elements?
- Given two different outputs, what was different about how each was created?
 - Critical for mission needs: if new output differs from old/expected, is the old correct, the new correct, or both wrong? How do you guarantee you answer that question correctly?

Existing Approaches


- Separate provenance databases
 - Not linked to data directly and only for data
- Custom file systems
 - Not portable
- Manual documentation
 - Human error has always been and will always be a factor

Containers EVERYWHERE!

- Basic abstraction is a file system in a file with a unique hash code ID!
- Singularity offers SIF that extends the idea like a physical device enabling separate partitions
- Automatic provenance collection plug-in tags and links invisibly using a separate partition.
- Idea: add detailed, automatically gathered provenance information to a separate, hidden data partition part of every container that shows the history. Add zero-copy capability for data usage/storage (mount multiple containers simultaneously). ALL containers, as explained later, have the metadata.


Fine grained containerization

- Basic workflow component has input, processing component, and output. Some outputs are used as inputs to another component.

- We choose to track the intermediate data as well by default

Workflow Graph Examples

UUID 00	Container_name train_27km.sif	UUID 02	Container_name eval_250m.sif
Container_name	train_27km.sif	Container_name	eval_250m.sif
Creation_time	2021-09-01T12:07:26-4	Creation_time	2021-09-09T13:40:02-4
Command_line	noop	Command_line	noop
Record_trail	[00, train_27km.sif]	Record_trail	[02, eval_250m.sif]
UUID 04	Container_name knn.sif	UUID 12	Container_name rf.sif
Container_name	knn.sif	Container_name	rf.sif
Creation_time	2021-09-07T12:14:54-EDT	Creation_time	2021-09-09T21:08:55-EDT
Command_line	noop	Command_line	noop
Record_trail	NULL	Record_trail	NULL
UUID 06	Container_name predictions_oklahoma.sif	UUID 14	Container_name predictions_oklahoma.sif
Container_name	predictions_oklahoma.sif	Container_name	predictions_oklahoma.sif
Creation_time	2021-09-09T13:40:06-4	Creation_time	2021-09-09T22:37:47-4
Command_line	python3 knn.py Train/train.csv Eval/eval_250m.csv Predictions/predictions_oklahoma.csv	Command_line	python3 rf.py Train/train.csv Eval/eval_250m.csv Predictions/predictions_oklahoma.csv
Record_trail	[06, predictions_oklahoma.sif] [04, knn.sif] [02, eval_250m.sif] [00, train_27km.sif]	Record_trail	[14, predictions_oklahoma.sif] [12, rf.sif] [02, eval_250m.sif] [00, train_27km.sif]
UUID 08	Container_name visualization.sif		
Container_name	visualization.sif		
Creation_time	2021-09-11T04:29:08-EDT		
Command_line	noop		
Record_trail	NULL		
UUID 10	Container_name output_oklahoma.sif	UUID 16	Container_name output_oklahoma.sif
Container_name	output_oklahoma.sif	Container_name	output_oklahoma.sif
Creation_time	2021-09-11T04:34:17-4	Creation_time	2021-09-11T06:08:37-4
Command_line	python3 visualization.py Predictions/predictions_oklahoma.csv Output/out_oklahoma.png 0.175 0.35	Command_line	python3 visualization.py Predictions/predictions_oklahoma.csv Output/out_oklahoma.png 0.175 0.35
Record_trail	[10, output_oklahoma.sif] [08, visualization.sif] [06, predictions_oklahoma.sif]	Record_trail	[16, output_oklahoma.sif] [08, visualization.sif] [14, predictions_oklahoma.sif]
UUID 17	Container_name output_oklahoma.sif		
Container_name	output_oklahoma.sif		
Creation_time	2021-09-11T06:08:37-4		
Command_line	python3 visualization.py Predictions/predictions_oklahoma.csv Output/out_oklahoma.png 0.175 0.35		
Record_trail	[17, output_oklahoma.sif] [08, visualization.sif] [15, predictions_oklahoma.sif]		

Conclusion

- Moving to a fine-grained FULLY containerized approach offers longevity for data and applications.
- Yes, there are overheads for storage, but for computation, it is nearly zero.
- Yes, we really need to have ALL system tools in containers and the OS in a VM and the hardware provided with emulators from the vendors, but all of these are solvable.