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UO, nuclear fuel rods @

¢ Nuclear fuel assembly consists of an array of fuel rods filled with fuel pellets
upper end plug cIadding lower end plug Y ‘
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Fission gas release

¢ Nuclear fuel pellets have a microstructure composed of grains
¢ Fission gas release happens in three distinct stages: [Andersson et al., 2014]

Nucleation and growth of intra-granular bubbles
Diffusion to the grain boundaries
Growth and interconnection of gas bubbles at grain boundaries
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Nucleation of intra-granular bubbles
¢ Uranium (@) and oxygen (@) form a lattice



Nucleation of intra-granular bubbles @
¢ Uranium (@) and oxygen (@) form a lattice
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« Free neutrons (o) initialize the fission process, creating byproducts such as xenon (@) ‘
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Nucleation of intra-granular bubbles @

¢ Uranium (@) and oxygen (@) form a lattice
« Free neutrons (o) initialize the fission process, creating byproducts such as xenon (@)
* Xenon gas bubbles get trapped inside the vacancies (if_‘mff:-) and migrate to the grain boundary
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Mechanistic model for intra-granular fission gas evolution

¢ Evolution equation for the concentration C, of each cluster with n Xe atoms

0C, .
= Fy, +Dy(T)VC,— Q(Cp)
ot ~— —_——— ~——
production diffusion interaction
of new Xe of Xe between
clusters clusters clusters

» The diffusion coefficient D,(T) is computed by
o Density Functional Theory (DFT) under thermal equilibrium [Perriot et al., 2019]
o The Centipede cluster dynamics code under irradiation [Matthews et al., 2020]

We monitor the following quantities:
« U diffusivity under thermal equilibrium conditions (D))
« Xe diffusivity under thermal equilibrium conditions (D$])
« Xe diffusivity under irradiation conditions (Di.

e O non-stoichiometry UO5

B
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Measurements of the diffusivity @

« Centipede predictions of D, D{ and DIff, with measurements taken from the literature
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Measurements of the stoichiometry

e Centipede predictions of O non-stoichiometry UO54

O non-stoichiometry

O non-stoichiometry
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Objectives

e Our goal is to perform Bayesian calibration of the Centipede cluster dynamics code, taking
into account that only summary statistics of the data (i.e., a measurement value with an
associated measurement error) are available

e Data-free inference (DFI) involves an outer iteration in the data space and an inner iteration in
the parameter space

data set proposal 1

data set proposal 2

data set proposal 3

| parameter proposal 1 |

| parameter proposal 1 |

| parameter proposal 1 |

| parameter proposal 2 |

| parameter proposal 2 |

| parameter proposal 3 |

| parameter proposal 3 |

| parameter proposal 3 |
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Objectives

e Our goal is to perform Bayesian calibration of the Centipede cluster dynamics code, taking

into account that only summary statistics of the data (i.e., a measurement value with an I
associated measurement error) are available

e Data-free inference (DFI) involves an outer iteration in the data space and an inner iteration in I
the parameter space

data set proposal 1 ta set proposal data set proposal 3

[ parameterpraposal 1 |
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| parameter proposal 2 |
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* We want to develop a computationally tractable DFI approach that can deal with multiple

experimental data sets of different size
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Bayesian calibration

Given a data set
Dy ={x7,vs", s}
and a prior p(v), we want to compute the posterior p(v|Dy)
Prior and posterior are connected through the likelihood function (Bayes’ theorem)

pw|Dy) o La(w)pw)

Assume model outputs are available as

n n
zf,") = fd(xfj), V) + (ff,)’r]
model additive noise

where 17 ~ N (0, 1) is a standard normal random variable

This yields a log likelihood of the form B
2
Ny (N _ £ xM
1 5 (Zd Xy, V)
(n)
log Ly(V) = > E log(2moy’ ) + 2
n=1 P

and samples of the posterior can be obtained using an accept-reject scheme 0023 I



Bayesian calibration

e DFI approach defines consistent data sets using a metric based on maximum entropy
* We will formulate an alternative metric for consistency that avoids the outer loop over the data
space altogether

« Define a collection of Ky synthetic data sets Zc(,k) = {zi,"’k) o k
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Consistent data sets

« Each synthetic data set represents an opinion on the posterior p(v|Dy) that can be
combined using logarithmic pooling

log L4(v ———Zlogﬁk)

Ka 'S
e The pooled posterior can be propagated through the model to obtain the pushforward
posterior p(fy(x, V)| Z4)
A data set is consistent if summary statistics §4 = {éd" 1 extracted from the pushforward

posterior agree with the reported summary statistics sy = {sd niq, e,

p(Sd, 8q) < €

where p is a distance metric, and the condition can be satisfied by choosing an appropriate
data scaling parameter (34
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Framework for obtaining consistent data sets

start

Y

prior synthetic
p(v) data set Z4

N/

Bayesian calibration
with likelihood L4(v)

Y

no

summary statistics
Sq

T

computed statistics
Sy

A

posterior

pv|Zq)

Y

model
f(x,v)

Y

pushforward poste-
rior p(fy(x, V)| Z4)
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Full likelihood construction

¢ Afinal likelihood can be constructed by combining the information from different data sources

D
log L) = > avglog Lg(v)
d=1

where o = (ad)3=1 are positive weights that allow us to express our confidence in the
respective experimental data sets
* To account for the different number of measurement locations Ny in each data set, choose

DN
d =30 T
Zd=1 Nd
d experimental data set measured quantity N, TO[K] Hf_p02
Sabioni DY 10 1973 5.10 i
Davies & Long D& 8 1973 5.10
Turnbull Dy, 16 1973 5.10

a b~ 0N =

stoichiometry UOo4 104 - -

Miekely & Felix D 32 1973 6.11
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Polynomial chaos expansion surrogates
e Using the Centipede predictions fd(xg'), v) directly in the log-likelihood is too expensive

* We propose to replace the model predictions by a polynomial surrogate model, i.e.,

f(x§ v) ~ PPW) = > cudul€Ww))

uel

where the multi-index u is part of the index set Z C Ng, cy is an unknown coefficient, and ¢,
is a multivariate orthogonal polynomial expressed in terms of the i.i.d. random variables

£:=(£1a£27"',§d) s
du(€) = [ ¢4(&)
j=1
» We use weighted iterative Bayesian compressive sensing to compute

the index set Z and the coefficients ¢y, u € 7
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Numerical experiments

Centipede is implemented within the phase-field code MARMOT using
the MOOSE framework
MOOSE provides easy access to the C++ Finite Element code 1ibMesh and

the scalable nonlinear PDE solver PETSc
Polynomial surrogates are constructed using UQTk
DFI approach implemented in C++ and linked to UQTk libraries

Used global sensitivity analysis (GSA) to identify a subset of 9 important parameters (initially
183 parameters)

Additionally, two operating conditions

o TO: temperature at which UO, is perfectly stoichiometric

o Hf _p02: the temperature of the oxygen partial pressure
are allowed to vary separately for each data set (for a total of 7 — 2 + 4 X 2 = 15 parameters
to calibrate)
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PCE surrogate model construction

e PCE surrogates constructed using 10,000 training points and 1,000 validation points

¢ PCE basis constructed using BCS shows good surrogate accuracy

surrogate prediction

surrogate prediction
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Generating consistent data sets

 Performed a grid search over the standard deviation scaling factors 84, d = 1,2, ...
find consistent data sets where the distance metric p(sy, 84) = ||Sg — 84]|2
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Pushforward posterior

e Calibrated pushforward posterior diffusivities show good match to the data
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MCMC chains
¢ Good mixing of MCMC chains
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Turnbull correlation @

e Comparison of the pushforward MAP prediction for Xe irradiation computed with surrogate I
model and actual Centipede code shows good agreement
e Comparison to Turnbull fit (best available experimental fit from literature)
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Conclusion and future work

We devised a Bayesian inference strategy to estimate the parameters in the cluster dynamics
code Centipede, where the reported data on UO, diffusivity and stoichiometry is available
as mean values with an associated measurement error

Our calibration strategy involves synthetic data sets that are consistent in the sense that the

statistics computed from the pushforward posterior agree with the reported summary
statistics

We used our Bayesian inference strategy to calibrate 9 Centipede parameters against 5
different experimental data sets with 208 measurements in total

The predicted pushforward posterior is in good agreement with the experimental data

In future efforts, we will work on improving the surrogate accuracy to be able to include more
parameters in the study (original model consists of 183 parameters)
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Conclusion and future work

We devised a Bayesian inference strategy to estimate the parameters in the cluster dynamics
code Centipede, where the reported data on UO, diffusivity and stoichiometry is available
as mean values with an associated measurement error

Our calibration strategy involves synthetic data sets that are consistent in the sense that the

statistics computed from the pushforward posterior agree with the reported summary
statistics

We used our Bayesian inference strategy to calibrate 9 Centipede parameters against 5
different experimental data sets with 208 measurements in total

The predicted pushforward posterior is in good agreement with the experimental data

In future efforts, we will work on improving the surrogate accuracy to be able to include more
parameters in the study (original model consists of 183 parameters)

Thank you
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