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UO2 nuclear fuel rods

Nuclear fuel assembly consists of an array of fuel rods filled with fuel pellets

fuel pelletsholddown spring

upper end plug cladding lower end plug
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Fission gas release

Nuclear fuel pellets have a microstructure composed of grains

Fission gas release happens in three distinct stages: [Andersson et al., 2014]

1 Nucleation and growth of intra-granular bubbles
2 Diffusion to the grain boundaries
3 Growth and interconnection of gas bubbles at grain boundaries
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Nucleation of intra-granular bubbles
Uranium ( ) and oxygen ( ) form a lattice

Free neutrons ( ) initialize the fission process, creating byproducts such as xenon ( )

Xenon gas bubbles get trapped inside the vacancies ( ) and migrate to the grain boundary

4 of 23



Nucleation of intra-granular bubbles
Uranium ( ) and oxygen ( ) form a lattice

Free neutrons ( ) initialize the fission process, creating byproducts such as xenon ( )

Xenon gas bubbles get trapped inside the vacancies ( ) and migrate to the grain boundary

4 of 23



Nucleation of intra-granular bubbles
Uranium ( ) and oxygen ( ) form a lattice

Free neutrons ( ) initialize the fission process, creating byproducts such as xenon ( )

Xenon gas bubbles get trapped inside the vacancies ( ) and migrate to the grain boundary

4 of 23



Mechanistic model for intra-granular fission gas evolution
Evolution equation for the concentration Cn of each cluster with n Xe atoms

∂Cn

∂t
= Ḟ yn︸︷︷︸

production
of new Xe
clusters

+ Dn(T )∇Cn︸ ︷︷ ︸
diffusion

of Xe
clusters

− Q(Cn)︸ ︷︷ ︸
interaction
between
clusters

The diffusion coefficient Dn(T ) is computed by
Density Functional Theory (DFT) under thermal equilibrium [Perriot et al., 2019]
The Centipede cluster dynamics code under irradiation [Matthews et al., 2020]

We monitor the following quantities:

U diffusivity under thermal equilibrium conditions (Deq
U )

Xe diffusivity under thermal equilibrium conditions (Deq
Xe)

Xe diffusivity under irradiation conditions (Dirr
Xe)

O non-stoichiometry UO2±x
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Measurements of the diffusivity
Centipede predictions of Deq

U , Deq
Xe and Dirr

Xe with measurements taken from the literature
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Measurements of the stoichiometry
Centipede predictions of O non-stoichiometry UO2±x

−20

−15

−10

lo
g 1

0
(p

O
2
)

−0.50

−0.25

0.00

0.25

0.50 O
non-stoichiom

etry

5 6 7 8

−20

−15

−10

1e4/T [1/K]

lo
g 1

0
(p

O
2
)

5 6 7 8

1e4/T [1/K]

−0.50

−0.25

0.00

0.25

0.50 O
non-stoichiom

etry

7 of 23



Objectives
Our goal is to perform Bayesian calibration of the Centipede cluster dynamics code, taking
into account that only summary statistics of the data (i.e., a measurement value with an
associated measurement error) are available
Data-free inference (DFI) involves an outer iteration in the data space and an inner iteration in
the parameter space [Berry et al., 2012, Chowdhary and Najm, 2016]

data set proposal 1

parameter proposal 1

parameter proposal 2

parameter proposal 3
...

data set proposal 2

parameter proposal 1

parameter proposal 2

parameter proposal 3
...

data set proposal 3

parameter proposal 1

parameter proposal 2

parameter proposal 3
...

· · ·

We want to develop a computationally tractable DFI approach that can deal with multiple
experimental data sets of different size
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Bayesian calibration
Given a data set

Dd = {x (n)
d , y

(n)
d , s(n)

d }Nd
n=1

and a prior p(ν), we want to compute the posterior p(ν|Dd )
Prior and posterior are connected through the likelihood function (Bayes’ theorem)

p(ν|Dd ) ∝ Ld (ν)p(ν)

Assume model outputs are available as

z(n)
d := fd (x (n)

d ,ν)︸ ︷︷ ︸
model

+ σ(n)
d η︸ ︷︷ ︸

additive noise

where η ∼ N (0, 1) is a standard normal random variable
This yields a log likelihood of the form

logLd (ν) = −1

2

Nd∑
n=1

log(2πσ(n)
d

2
) +

(
z(n)

d − fd (x (n)
d ,ν)

)2

σ(n)
d

2


and samples of the posterior can be obtained using an accept-reject scheme 9 of 23



Bayesian calibration
DFI approach defines consistent data sets using a metric based on maximum entropy
We will formulate an alternative metric for consistency that avoids the outer loop over the data
space altogether
Define a collection of Kd synthetic data sets Z (k )

d := {z(n,k )
d }Nd

n=1, k = 1, 2, . . . ,Kd , where

z(n,k )
d ∼ N

(
y (n)

d , βd s(n)
d

2
)
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Consistent data sets

Each synthetic data set represents an opinion on the posterior p(ν|Dd ) that can be
combined using logarithmic pooling

logLd (ν) := − 1

Kd

Kd∑
k=1

logL(k )
d (ν)

The pooled posterior can be propagated through the model to obtain the pushforward
posterior p(fd (x,ν)|Zd )

A data set is consistent if summary statistics s̃d = {s̃(n)
d }Nd

n=1 extracted from the pushforward
posterior agree with the reported summary statistics sd = {s(n)

d }Nd
n=1, i.e.,

ρ(sd , s̃d ) < ε

where ρ is a distance metric, and the condition can be satisfied by choosing an appropriate
data scaling parameter βd
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Framework for obtaining consistent data sets

start

synthetic
data set Zd

prior
p(ν)

< ε

end

summary statistics
sd

computed statistics
s̃d

ρ

pushforward poste-
rior p(fd (x,ν)|Zd )

Bayesian calibration
with likelihood Ld (ν)

posterior
p(ν|Zd )

model
f (x,ν)

yes

no
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Full likelihood construction
A final likelihood can be constructed by combining the information from different data sources

logL(ν) :=
D∑

d=1

αd logLd (ν)

where α = (αd )D
d=1 are positive weights that allow us to express our confidence in the

respective experimental data sets
To account for the different number of measurement locations Nd in each data set, choose

αd :=
DN−1

d∑D
d=1 N−1

d

d experimental data set measured quantity Nd T0 [K] Hf_pO2

1 Sabioni Deq
U 10 1973 5.10

2 Davies & Long Deq
Xe 8 1973 5.10

3 Turnbull Dirr
Xe 16 1973 5.10

4 Miekely & Felix Deq
Xe 32 1973 6.11

5 stoichiometry UO2±x 104 - -
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Polynomial chaos expansion surrogates

Using the Centipede predictions fd (x (n)
d ,ν) directly in the log-likelihood is too expensive

We propose to replace the model predictions by a polynomial surrogate model, i.e.,

fd (x (n)
d ,ν) ≈ P (n)

d (ν) :=
∑
u∈I

cuφu(ξ(ν))

where the multi-index u is part of the index set I ⊆ Nd
0 , cu is an unknown coefficient, and φu

is a multivariate orthogonal polynomial expressed in terms of the i.i.d. random variables
ξ := (ξ1, ξ2, . . . , ξd )

φu(ξ) :=
s∏

j=1

φuj (ξj )

We use weighted iterative Bayesian compressive sensing [Sargsyan et al., 2014] to compute
the index set I and the coefficients cu , u ∈ I
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Numerical experiments

Centipede is implemented within the phase-field code MARMOT [Tonks et al., 2012] using
the MOOSE framework [Permann et al., 2016]

MOOSE provides easy access to the C++ Finite Element code libMesh [Kirk et al., 2006] and
the scalable nonlinear PDE solver PETSc [Balay et al., 2022]

Polynomial surrogates are constructed using UQTk [Debusschere, 2017]

DFI approach implemented in C++ and linked to UQTk libraries

Used global sensitivity analysis (GSA) to identify a subset of 9 important parameters (initially
183 parameters)

Additionally, two operating conditions

T0: temperature at which UO2 is perfectly stoichiometric
Hf_pO2: the temperature of the oxygen partial pressure

are allowed to vary separately for each data set (for a total of 7− 2 + 4× 2 = 15 parameters
to calibrate)
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PCE surrogate model construction
PCE surrogates constructed using 10,000 training points and 1,000 validation points
PCE basis constructed using BCS shows good surrogate accuracy

max training error = 0.000011
max validation error = 0.000013
max PCE order = 7
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Generating consistent data sets
Performed a grid search over the standard deviation scaling factors βd , d = 1, 2, . . . ,D to
find consistent data sets where the distance metric ρ(sd , s̃d ) := ‖sd − s̃d‖2
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Pushforward posterior
Calibrated pushforward posterior diffusivities show good match to the data
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MCMC chains
Good mixing of MCMC chains

S_U01_O02 Q_Xe_vU02_vO01 log10_w_Xe_vU02_vO01

T0 (Sabioni) Q_vU01_vO00 Hf_pO2 (Sabioni)

S_vU00_vO01 T0 (Miekely & Felix) T0 (Davies & Long)

Q_Xe_vU04_vO03 T0 (Turnbull) Hf_pO2 (Turnbull)
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# MCMC iterations (×106)
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# MCMC iterations (×106)

Hf_pO2 (Davies & Long)
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Turnbull correlation
Comparison of the pushforward MAP prediction for Xe irradiation computed with surrogate
model and actual Centipede code shows good agreement
Comparison to Turnbull fit (best available experimental fit from literature)
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Conclusion and future work

We devised a Bayesian inference strategy to estimate the parameters in the cluster dynamics
code Centipede, where the reported data on UO2 diffusivity and stoichiometry is available
as mean values with an associated measurement error

Our calibration strategy involves synthetic data sets that are consistent in the sense that the
statistics computed from the pushforward posterior agree with the reported summary
statistics

We used our Bayesian inference strategy to calibrate 9 Centipede parameters against 5
different experimental data sets with 208 measurements in total

The predicted pushforward posterior is in good agreement with the experimental data

In future efforts, we will work on improving the surrogate accuracy to be able to include more
parameters in the study (original model consists of 183 parameters)

Thank you
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