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‘ Cradle-to-Grave Model of PMDI Foam

Overarching Goal: A computational model for foaming, vitrification, cure, aging to help us
design molds and determine how inhomogeneities effect the structural response of the

final part, including long term shape stability

Injection,
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Cradle-to-Grave Modeling of Foam Parts

Kinetics and species balances for CH20 and

YRCT were developed and coupled to the solid
I Sierra Mechanics FEA Code Suite I mechanics FE code through an ALE formulation
in the thermal-fluid FE code

Thermal-Fluid Thermal-Fluid/Solid Thermal-Fluid/Solid
Mechanics Mechanics

Vitrified and Released \\
(10* + seconds)

Residual stresses, density,
and properties vary spatially

Water uptake/swelling and
post-cure shrinkage reactions

Both long and short term
shape change is possible as
different parts of the foam

relax at different rates

B

b

Foaming and Filling

Primary Cure Demolding

Manufacturing Service Life




Why Are Polyurethane Structural Foams Difficult? [@11

Polyurethane (PMDI) is used as an encapsulant
for electronic components, to mitigate against
shock and vibration, and for light-weight
structural parts.

High-tidelity cradle-to-grave foam models for
structural polyurethane for part design.

© Fﬂhng proﬁle for vent and gate locations PMDI has a short pot-life: models
. . . L. . can help reduce defects and
°> Density and density gradient predictions for initializing improve filling process

structural mold, including pressurization and
compressibility effects

> Polymerization chemistry for gelation and vitrification
> Manufacturing stresses

> Dimensional stability during manufacturing and aging

Customer asked us to “use” the model to
support mold design — while the model
was still under development.

I Support A-4 PMDI Structural Part I

OUO/ECI




Foam Filling is Complex
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Foam front moving past camera, with bubble sizes at
transparent wall determined with image processing.

3 views of foam filling with several plates spaced

. unevenly. Vent location is critical to keep from
the foam expansion, trapping air.

changing the material
from a viscous liquid to
a multiphase material.

Gas generation drives

Two key reactions: Isocyanate reaction with polyols and water

. . o

Cont]nuous phase 15 Il-| I Urethane formation,

time- and Ri—N=C=0 + HO—R; —> R;—N-C-O-R crosslinking

temperature- H O o
| Foaming reaction yields

dependent and Ri—N=C=0 + H20 —» Ry—N-C-OH—» CO, * R;—NH, CO,andamine

eventually vitrifies to a
solid.




Equations of Motion Include Evolving
Material Models

I Momentum equation and continuity have variable density, shear viscosity, and bulk viscosity I
ov
pa— = —pVOVV—VerVO(yf(VV+Vvt))—VOE(VOV)I+pg
A
D
=hr +p,Vev=0
Dt

Energy equation has variable heat capacity and thermal conductivity including a
source term for heat of reaction for foaming and curing reactions

pC,, %—f+pCpfv0VT =Ve(kVT)+ pp,AH %—f

I Extent of reaction equation for polymerization: condensation chemistry I
o0& 1 E m "
EY - ((1 + wa)ﬁ J[ko exp(— ED@ +¢ Xl B é:) NMR imaging shows coarse
microstructure (Altobelli,
2006
I Molar concentration equations for water and carbon dioxide I )
X —
dCy . L o C,. - P foam™ 11,0 ko = Ay exp(=E, , / RT)
dt — "“H,0%~H,0 MH20
dCCO B pfoame02 Rao et al., “Polyurethane kinetics for foaming and
2 =4k C" C002 - polymerization” , AICHE Journal, 2017
H,0~H,0 M co,

dt




Complex Material Models Vary with Cure,
Temperature, and Gas Fraction

I Foaming reaction predicts moles of gas from which we can calculate density I
_ PM,,
Pgas RT Compressibility built
into this model via the
v = V M Co, C'CO2 b = v ideal gas law for gas
v density
I/llq IO gas 1 TV

pfoam = IOgas¢v + IOliq (1 _¢v)

I Thermal properties depend on gas volume fraction and polymer properties

5 ;
= _(ﬁ)ke +(1- ﬁ)kv Foam is a collection of
Pe Pe bubbles in curing polymer

Cpf = Cpl¢l + va¢v + Cpe¢e

Shear and bulk viscosity depends on gas volume

fraction, temperature and degree of cure » Experiments to determine foaming and curing

kinetics as well as parameters for model

& —¢&"
Se

= 1 exp(%) Hy = Hy exp(— ”)( )"

—ﬂo (¢, -1

3 9,
. . ) Gibson, L. J.; M. F. Ashby. Cambridge
M. Mooney, J. Colloid Sci., 6, 162-170 (1951). University Press, Cambridge, UK, 1990




Coupled Finite Element Method/Level Set

to Solve Foam Dynamics

:%: HA HB

o0 “ “ o ¢
= ot

___foam
|
- 0 T
y sin( ¢) Nicoguaro [CC BY 4.0
H(p)=— (1 +=+ — % ) _a<p<a (https://creativecommons.org/licenses/by
T /4.0)], from Wikimedia Commons

» Level set advects with the fluid velocity

« Renormalize periodically to maintain the distance function using a mass
conserving Huygens algorithm

* Properties vary with the level set based on the level set and modulated
using the Heaviside

1B = (yas =) H D)+ 1 |
K(B) = (K s = K )H (D) + K
PB) = (Pos = P VHB) + P o

RR Rao et al, C&F, 2018




Coupled Finite Element Method/Level Set
to Solve Foam Dynamics

HA HB

gas a¢+v Vo=0
foam Ot
|

— U =
Momentum and Continuity shown for an example. Energy is similar

p(¢)(% +VeVy) =—VP+V- (Vv +W') —@ ne)- K’(¢)j (V-v)D+p(Pg

Heaviside

a'(;(t@ +V-p(d)v=0
Reactions equations use equation averaging and a Heaviside directly on the equations
oo = —~(ky.oChr.0)H g
dt 0
dC.,
= =+(ky oCpo)H
” ( 0)

Equations dlscretlzed with bilinear FEM, pressure stabilized and upwinded

Equations solved in a segregated manner with momentum and pressure in one block,
level set in another, and energy and reactions in the third

Each block solved with Krylov-based iterative solvers
RR Rao et al, C&F, 2018




‘ Simulations & Experiments

Simulations
° Flat configuration
° 5° tilt
° 20° tilt
° 20° tilt toward the shelf feature

> Study of vent locations

Experiments

° Flow visualization experiments

o Additive manufacture mold

Goal: Use foaming and filling modeling
and flow visualization experiments to
develop confidence in foam model




These Vent Locations Seem
+ 1 Representative of a Foaming Process

Simulation tests
the idea of adding
a vent on the shelf
feature




Initial Conditions for Model: Experiments
-1 Show Shelf Starts Well-Filled

%F’)[ 2.6 2017;;04 B | Flow visualization study using

R '™ : N opaque mold to determine filling
of shelf supports use of flat initial
condition

Leveling after pour *"

Flow visualization verifies initial dr

condition: Y v

 Foam levels well and flows to fill she &fSimulation IC with no tilt e
ared “1+ Shelf is half-filled at

» Simulation initial condition of a flat

: : start of the simulation
interface seems fairly accurate




Foam Filling and Curing for Flat Configuratiom’

Time = 5.00 Base Case:

* Look at issues
for filling the
mold when it is
flat on the
table

* Model shows
density
evolution and
filling profile
over time

rho

£ 1.000e+00
7.625e-01 '
5.250e-01 |
||

2.875e-01
5.000e-02




rho

2 4.300e-01
3.850e-01
3.400e-01

2.950e-01
2.200e-01

Density Variations at Different Locations: Flat
Mold with Shelf Vent

time=82.7s
voids = 3.6%




Dynamics of Filling with 200 Tilt Angle

Foam Using a 20° Tilt

Angle forward similar

to legacy process

* [Initial condition has
a tilt forward for
foam position and a
flat interface

» Gravity vector is
also tilted

Time = 5.000000




16‘ Density Variations: Back View

Time = 82.737
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vard tilt moves defects to the
back part of the mold
« Tilt fills faster than flat
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‘ Computational Models of Foam

FLAT FILL
Time = 71.091 =

| FLAT HOT |

Time = 82737 Time = 69.269 ¢

| Density variations for three cases of interestl

Max. Time (s)

Voids 3.6%  4.4% 2.9%
Density 2.8 2.9 3.6
variation
I
All cases fill well! |
j * Model over-predicts voids, but
Foam filling for 20° tilt: the angled fill predi.ctions.ar.e small .
reduces voids on the new shelf « Density variation greater with

tilt



18‘ Computational Models of Foam

Time = 5.0 ) Time = 366 Time =74.9

rho

| Evolution of density for flat mold with vent on ."c/he shelf featule i
Time = 75.2433

3.250e-01
1.000e-01

Flow visualization study supports
computational conclusions

Foam filling %or 200 tilt: the angled fill
reduces voids on the new shelf




Validation Experiment: 5 Degree Tilt:
»1 Foam Fills Shelf and Levels Quickly

* New experiment using clear mold

* Room temperature mix of foam, which heats up to 24°C
* Mold stays roughly 22°C

« 5 degree tilt towards the front of the mold




20

Run model with similar initial
conditions:

« 240¢g material

* 4 degree tilt

 Room temperature mold and foam

Experimental Conditions: Back of Mold

Shape of the model interface
matches well with shape of
experiment thought model
fills back feature faster




21‘ Compare Mold Front: Early Times

Time = 34.184




22‘ Compare Mold Front: Moderate Time

Time =49.913




23‘ Compare Mold Front: Late Time

Time = 68.204

Shape of the model interface
matches well with shape of
experiment and the time-
scale is similar




) Shelf Feature Fills Well in Clear Mold

Experiment shows good filling of
the shelf feature even at early
times giving confidence in the
foam model




Develop an engineering-scale model framework for

manufacturing and in-service aging for Rigid PMDI
Foams

Outputs

Gelation
emolding

W~risco

blowing Gas
Depressurizatio udep
n

U = UWUyisco T Udep T UH20 T Uchem

OUO/ECI




A Key Model Target: Inverse mold design for
manufacturing/age aware shrinkage mitigation

Inputs Output
Manufacturing Cradle-to-
Conditions — Grave

Initial Mold
Design

X [t] - XO + Uvyisco T Udep + W20 + Uchem

Xnew — XO — Uyisco — Udep — UH20 — Uchem

Superposition is employed to combine displacements from different
mechanisms and then to “inverse warp” the initial mold design

OUO/ECI




Non-Linear Curing Viscoelastic Solid Modeling

Balance Laws and Solution Fields:

* Mass + Momentum (Displacements) <— Lagrangian

* Species Balance (Chemical Reaction Extent)e— AIIZ_IIEEI\I/JEM

* Energy (Temperature) <

Solid State Non-Linear Viscoelastic (NLVE) Model Initial Conditions

 |Initialize temperature, foam density, and reaction extent from simulation
stage 1

* Directly initialize the stress-free reaction and temperature (expansion free)

e Assume the NLVE viscous stresses are initially zero

Stress prediction based on the universal curing model developed at SNL
DB Adolf and RS Chambers, “ A thermodynamically consistent, nonlinear viscoelastic approach for
modelling thermosets during cure,” J. Rheology, 2007.

Cauchy Stress: SNL Non-linear Viscoelastic Curing Model (Adolf & Chambers 2007)
= o{logg , T, x, histories]
xR

7 \
Logarithmic Strain Temperature Extent of matrix cure

Material and Laboratory Time Relation Dens:tz

+ dt/ ( N J calm (Q‘OJ Y[P,0r0] Free Energy

dt = loga=—-C, (oY
C N
alt] - alp] =L fo) alp.sl Cauchy Stress




Curing NLVE Model Continued

Relaxation behavior and mechanical properties depend on
the temperature, extent of cure, and histories of

(S) 0 dédev (u)

Shear Deformation

deformation
Material Time Dependencies Thermal / Pressure

N={[T<f>-ﬂef1—f dsﬂ(t*—s*>%<s>}”3{%»4—1%ﬁ<r*-s*>%<s>}

tt d t
+C4{desduf(t*—s*,t*—u*) édde; — }+C5(x(t)) {[x(t)—xwf]—jdsfl(t*—s*)%(s)}

Matrix Cure

Glass Transition Evolution

Shear Modulus

[CB.+C(x)] (x)-x,)
(1+Ce,)

];ef (.X) = T;ef

Cl) =, # Cy

oG

aG, .
G(1)= Gy + (T =T, )+ — 2 (xx,,)

G, (T)= {wa

X

-+@<T—Tmf)} i
or Xyor — X,




Contour Plots of Displacements: Manufacturing +
Viscoelasticity

Deformed shape shown to Deformed shape magnified
scale 10x




Poor fill quality leads to large, local deformations [EI'

Density of filled part Displacement from
Manufacturing +
Viscoelasticity, Deformed
shape shown to scale




Volume Strain as a Function of Time
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Change in Bounding Box Length—X Direction

= 30 years
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Change in Bounding Box Length—Z Direction
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+«1 Conclusions

° All simulations filled fairly well: Complex mold should fill with new
shelf!

° Density of the shelf may be lower than nominal density

> Higher temperature increased void size due to ideal gas law, though
it filled faster on average

°Vent on shelf did not change void content or density — this is
probably due to coarse mesh. In real world, it should help

> Model follows free surface of foam fairly well

> Combination of experimental and computational work led to
synergistic breakthroughs creating confidence in mold redesign

° Density and density gradients are still not quantitative and give
direction for future work -> bubble-scale modeling

> Multiphysics models allows prediction of shape change during
manufacturing and viscoelastic relaxation over 30 years of storage




