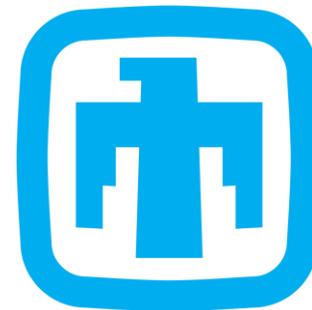
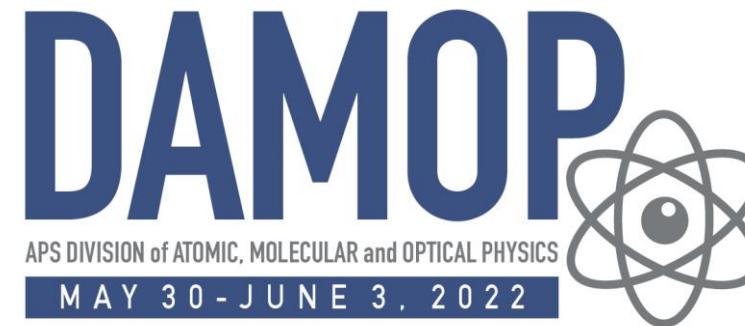


Two-qubit Quantum Logic Gates for Neutral Atoms Based on the Spin-Flip Blockade



**Sandia
National
Laboratories**

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia (NTESS), LLC, a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy National Nuclear Security Administration under contract No. DE-NA0003525



CQuIC
Center for Quantum
Information and Control

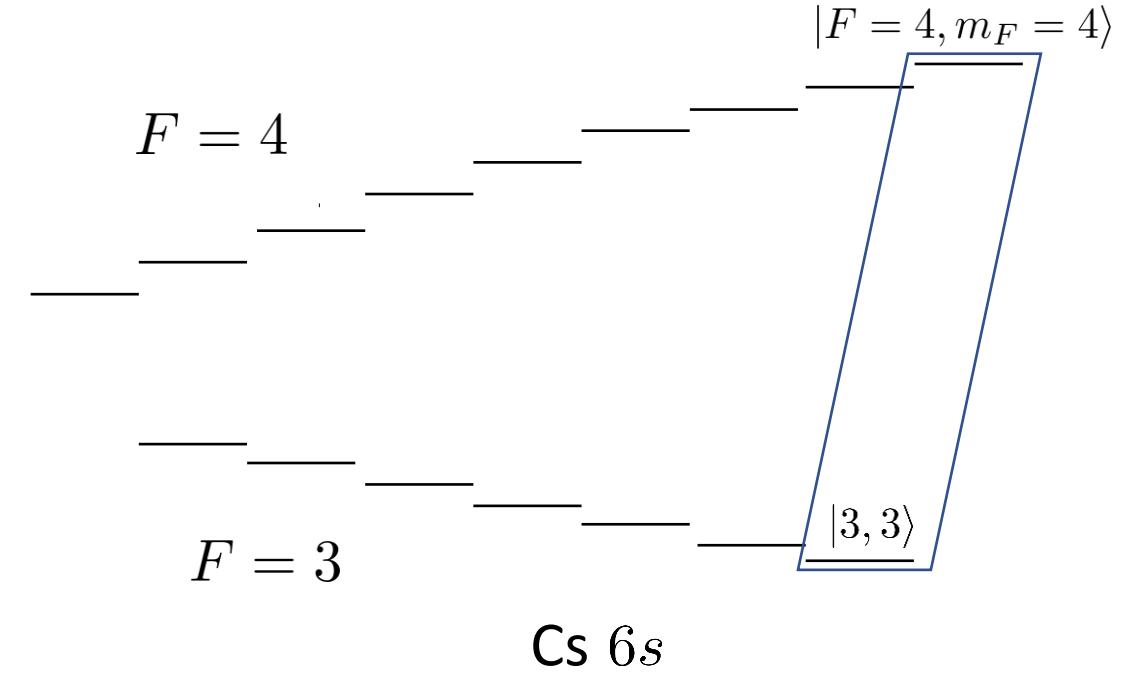
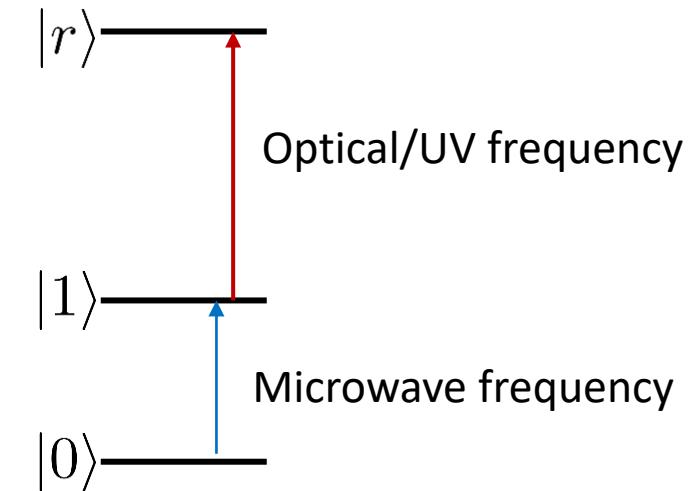
**Vikas Buchem mavari, Sivaprasad Omanakuttan,
Yuan-Yu Jau, Ivan Deutsch**

Cesium system

Motivation: Designing a high fidelity
Entangling gate for Neutral atom qubits

Entanglement achieved via Rydberg
states

$$H_{int} = V_{rr} |rr\rangle\langle rr|$$



—|rr⟩

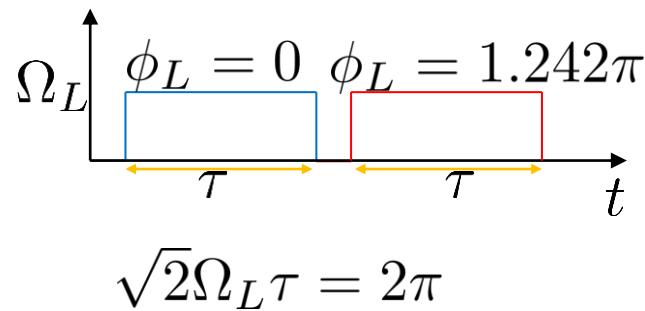
Levine-Lukin gate – LL gate

—
|00⟩

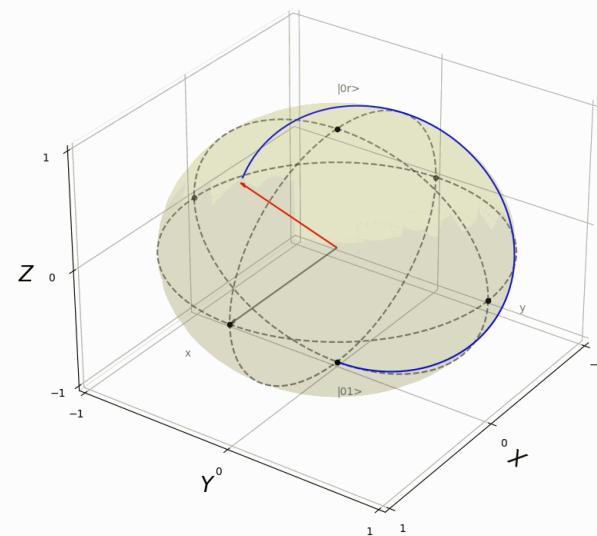
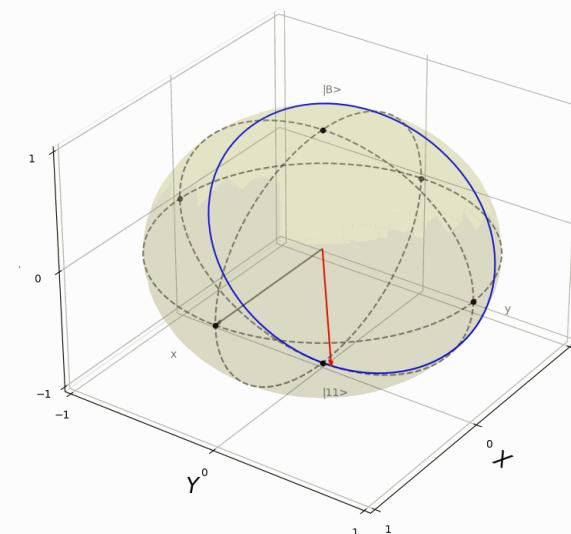
|0r⟩, |r0⟩
—
Δ_L
|01⟩, |10⟩
Ω_L, ϕ_L

|B⟩ = $\frac{|1r\rangle + |r1\rangle}{\sqrt{2}}$
—
Δ_L
|11⟩
√2Ω_L, ϕ_L

|00⟩ → |00⟩
|01⟩ → $e^{i\alpha}|01\rangle$
|10⟩ → $e^{i\alpha}|10\rangle$
|11⟩ → $e^{i\beta}|11\rangle$

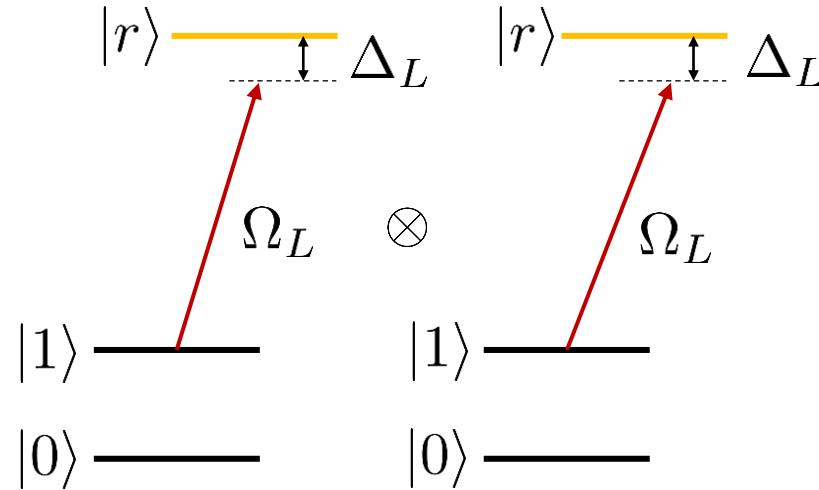


$$\Delta_L = 0.377\Omega_L \implies \beta - 2\alpha = \pi$$

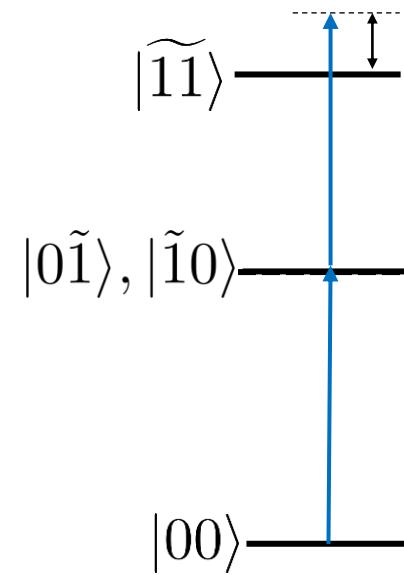
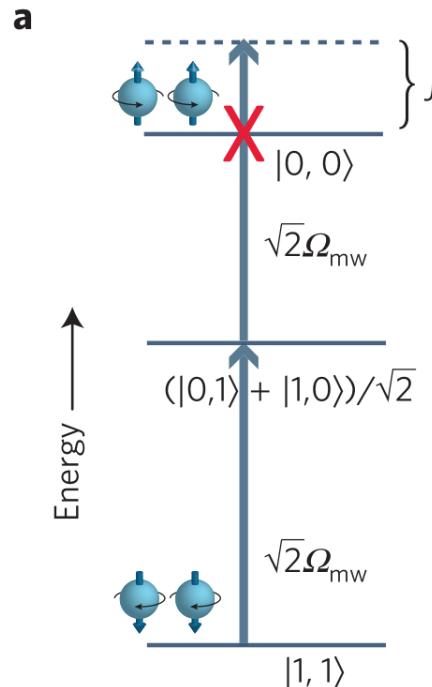


Entangling atomic spins with a Rydberg-dressed spin-flip blockade

Y.-Y. Jau^{1,2}, A. M. Hankin^{1,2}, T. Keating^{1,2}, I. H. Deutsch^{1,2} and G. W. Biedermann^{1,2*}



$$\Rightarrow J = E_{LS}^2 - 2E_{LS}^1$$

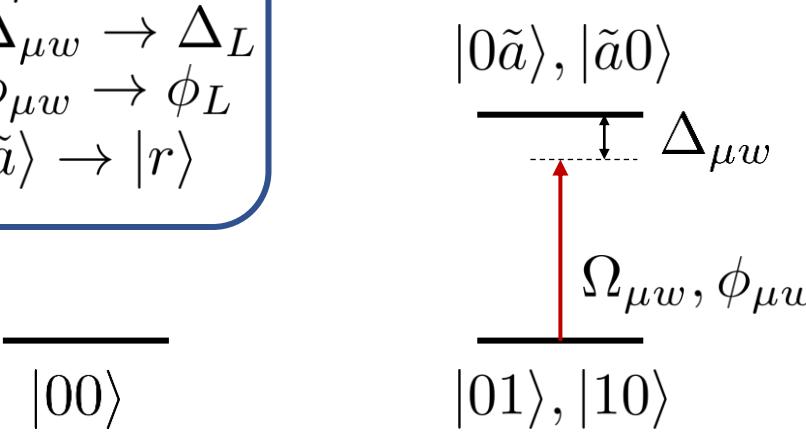


LL gate in the hyperfine regime

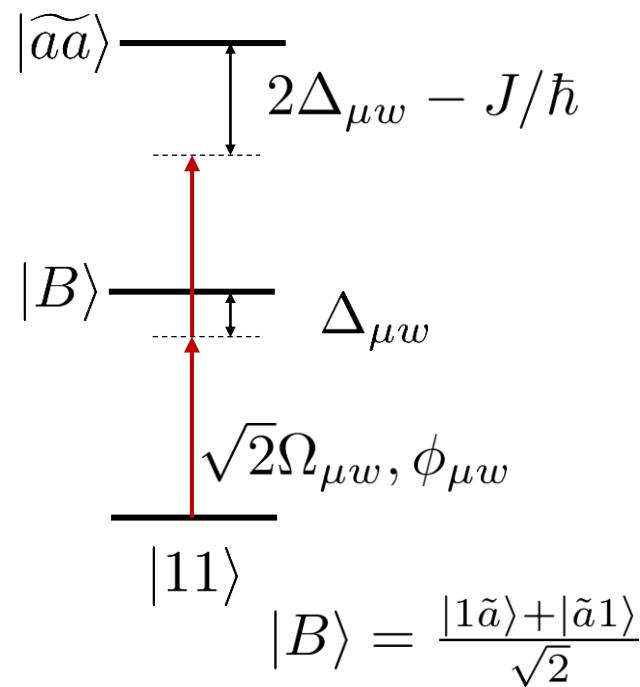
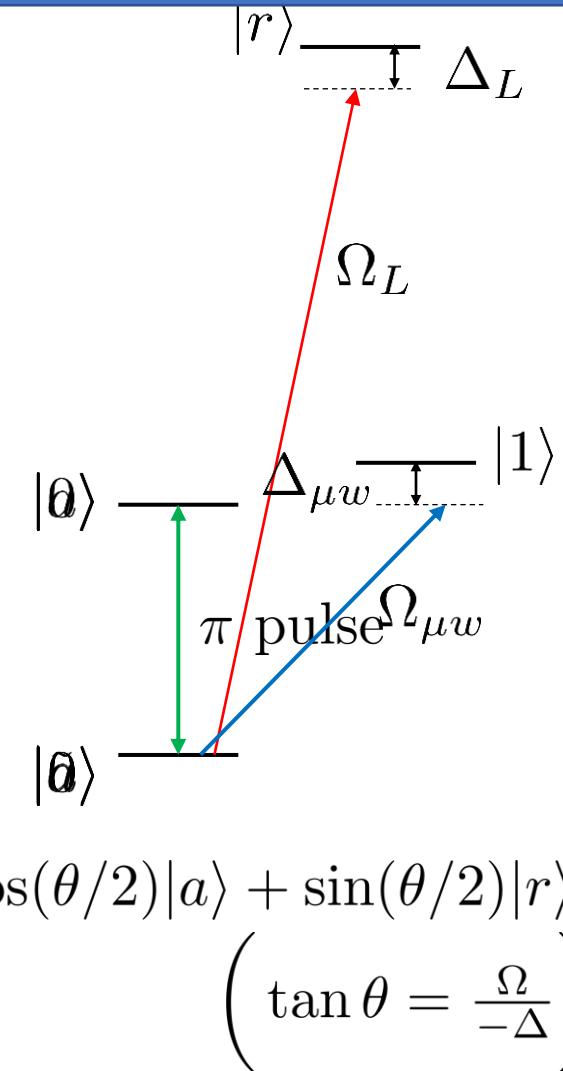
$$H_{hf}^1 = E_0|0\rangle\langle 0| + E_1|1\rangle\langle 1| + E_a|a\rangle\langle a|$$

$$H_{hf} = H_{hf}^1 \otimes \mathbf{1} + \mathbf{1} \otimes H_{hf}^1 + \textcolor{red}{J} |\widetilde{aa}\rangle\langle\widetilde{aa}|$$

$$\begin{aligned} J &\rightarrow V_{rr} \\ \Omega_{\mu w} &\rightarrow \Omega_L \\ \Delta_{\mu w} &\rightarrow \Delta_L \\ \phi_{\mu w} &\rightarrow \phi_L \\ |\tilde{a}\rangle &\rightarrow |r\rangle \end{aligned}$$



Jandura, Pupillo; arXiv:2202.00903 (2022)



$$\begin{aligned} J &\rightarrow V_{rr} \\ \Omega_{\mu w} &\rightarrow \Omega_L \\ \Delta_{\mu w} &\rightarrow \Delta_L \\ \phi_{\mu w} &\rightarrow \phi_L \\ |\tilde{a}\rangle &\rightarrow |r\rangle \end{aligned}$$

J is much smaller than V

If we aim for perfect blockade, our gates become much slower

Is there a way around this?

Yes! Quantum optimal control is the answer!

Optimal Quantum control for the LL gate

We use Gradient Ascent Pulse Engineering (GRAPE)

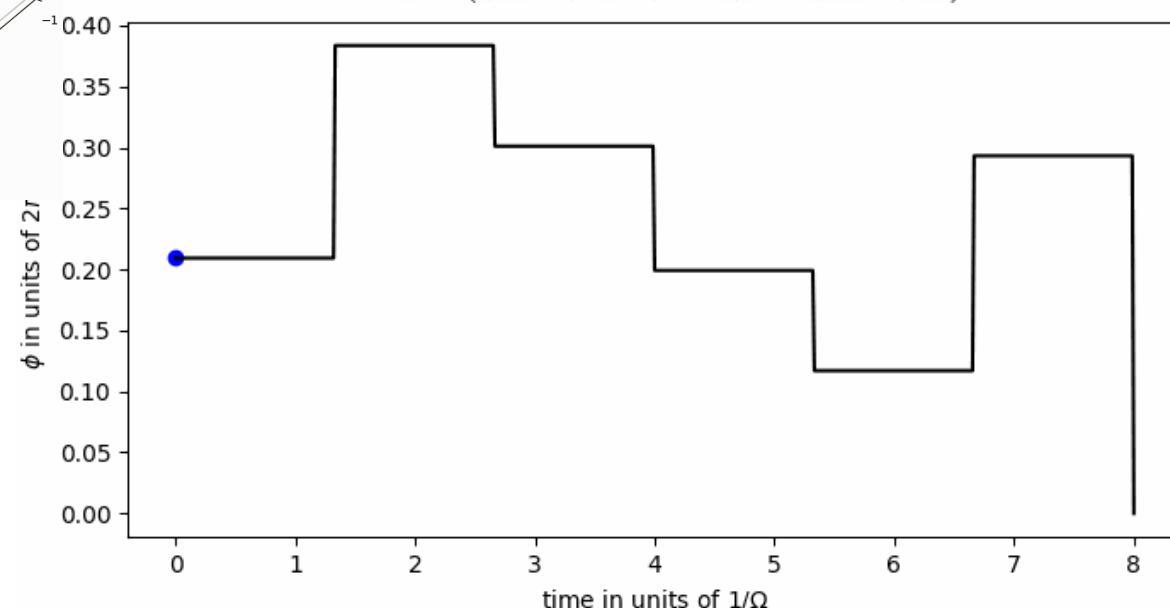
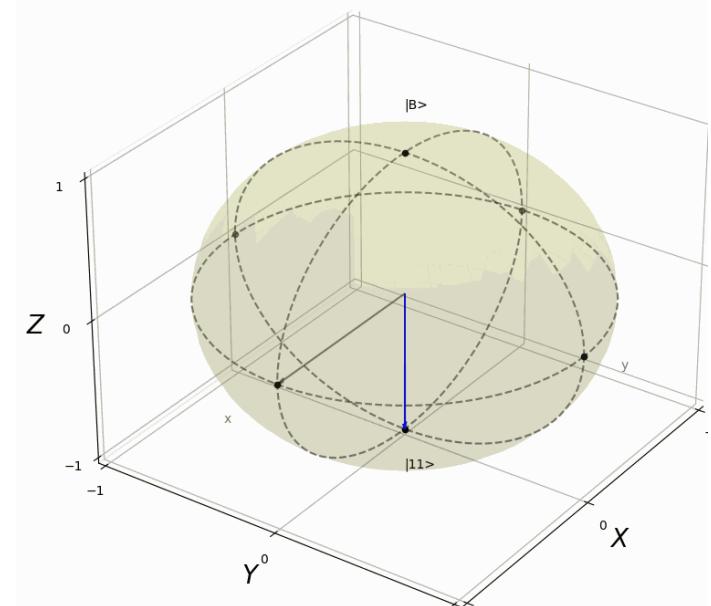
We maximize \mathcal{F} by using $\vec{\nabla}_{\vec{\phi}} \mathcal{F}$.

$$\mathcal{F} = \text{Tr}((\text{CZ})^\dagger U[\phi(t)])$$

$$\Delta_L = 0, \Omega_L = 1$$

$$\vec{\phi} = (\phi_1, \phi_2, \phi_3, \phi_4, \phi_5, \phi_6)$$

$$|01\rangle \rightarrow e^{i\phi_1} |01\rangle$$



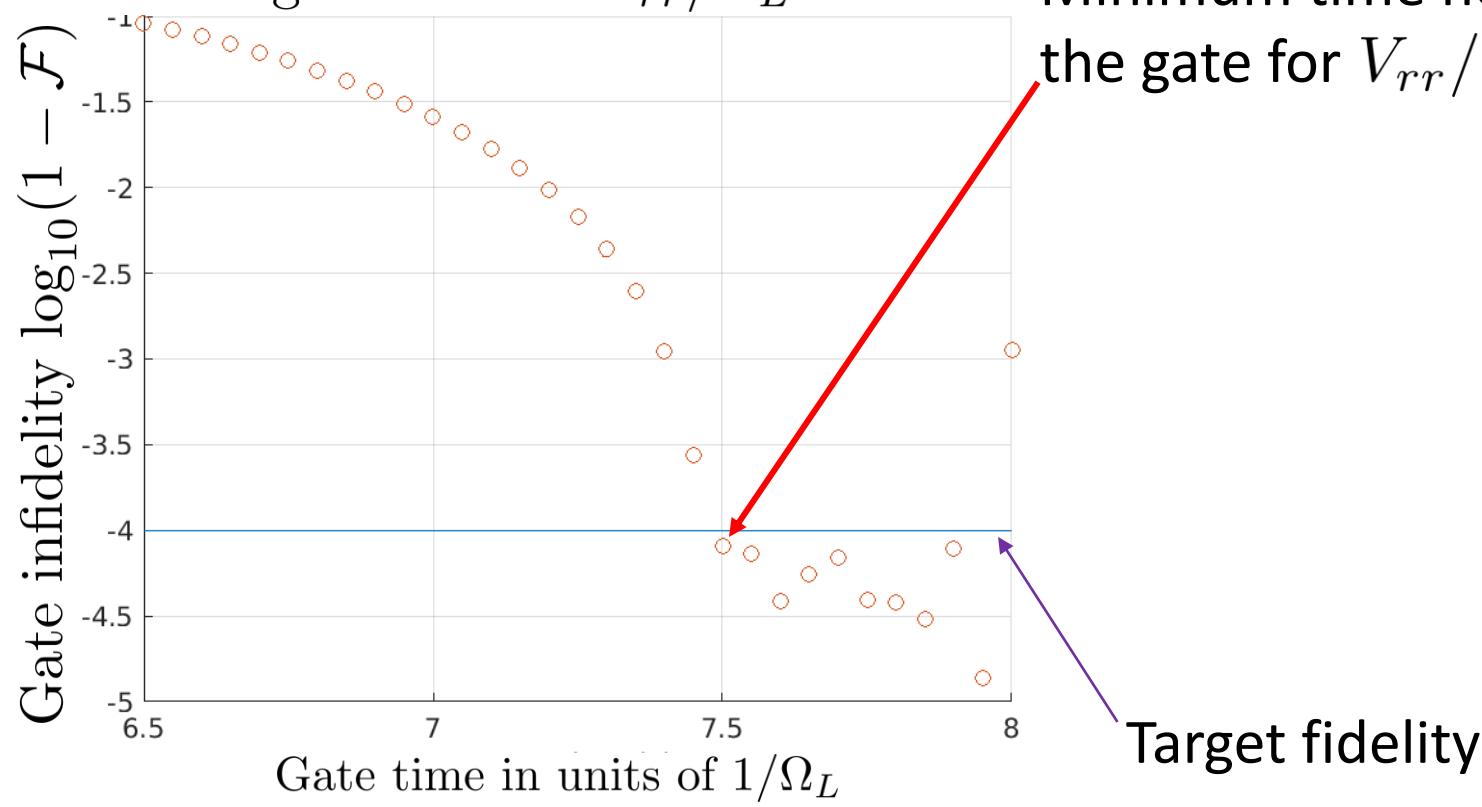
$$|11\rangle \rightarrow e^{i\phi_2} |11\rangle$$

$$\phi_2 - 2\phi_1 = \pi$$

Quantum speed-limit

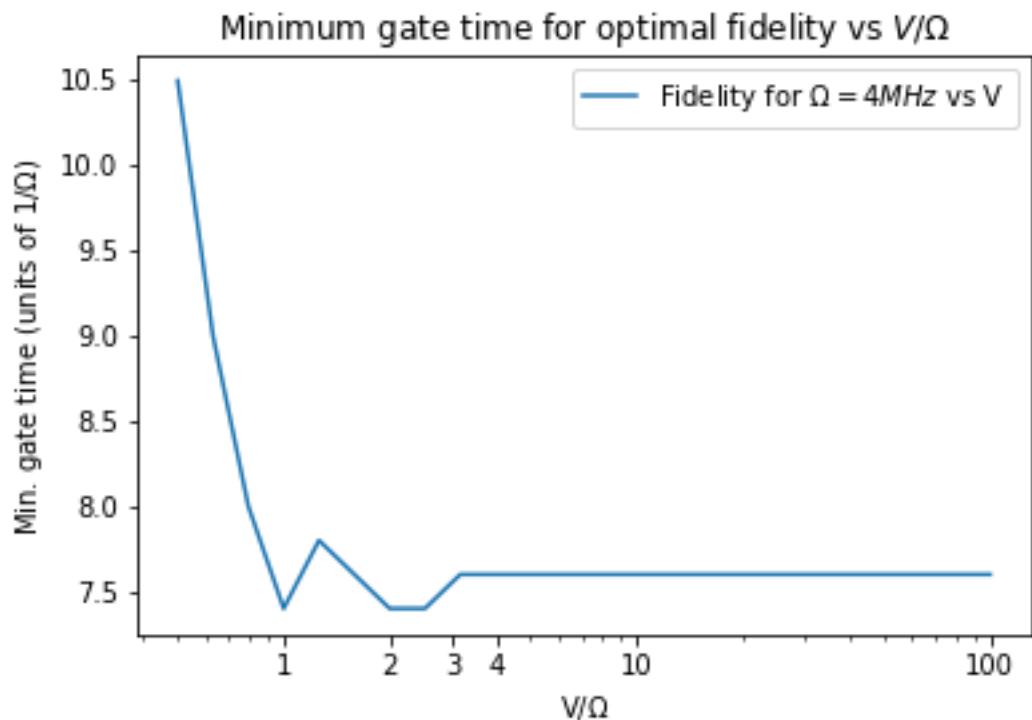
Infidelity of the Optimal control gate

vs gate time at $V_{rr}/\Omega_L = 4$



Minimum time needed to implement
the gate for $V_{rr}/\Omega = 4$

Some counterintuitive results!



Imperfect blockade doesn't slow down your gate too much! In fact, it can make it faster!

$$H = \frac{\Omega}{2}(\sigma_{\phi}^1 + \sigma_{\phi}^2) + \frac{V_{rr}}{2}(\sigma_z^1 \otimes \sigma_z^2 + \sigma_z^1 + \sigma_z^2)$$

Known result from Spin Quantum control!

$$J = \omega(J_x \cos \phi + J_y \sin \phi) + \kappa J_z^2$$

The fastest state preparation times arise when $\kappa \sim \Omega$.

-The cost: More population is pumped into $|rr\rangle$

Tunability of interaction strength

By changing our dressing parameters, Δ_L, Ω_L

We can change J and the Rydberg character of the dressed states

$$P_{\tilde{a}} = |\langle r|\tilde{a}\rangle|^2$$

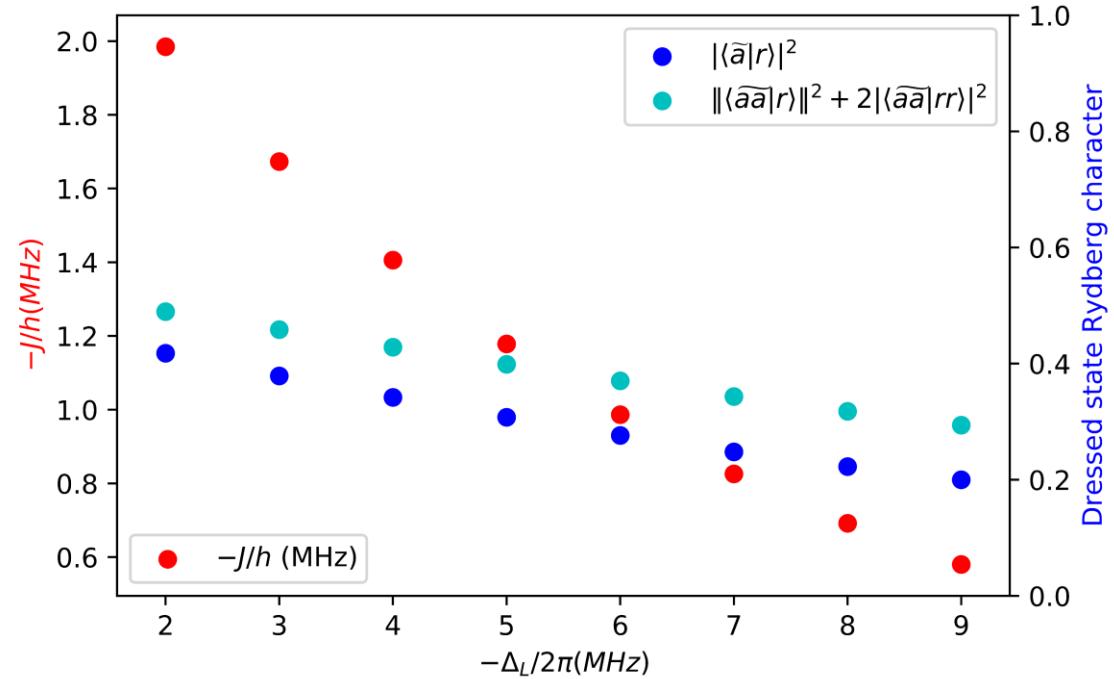
$$P_{\tilde{aa}} = \|\langle r|\tilde{aa}\rangle\|^2 + 2|\langle rr|\tilde{aa}\rangle|^2$$

$$\Gamma_{\tilde{a}} = P_{\tilde{a}}\Gamma_r$$

$$\Gamma_{\tilde{aa}} = P_{\tilde{aa}}\Gamma_r$$

We can choose between a stronger interaction strength vs a weaker decay!

$$\Omega_L/2\pi = 12\text{MHz}, V_{rr}/2\pi = -40\text{MHz}$$



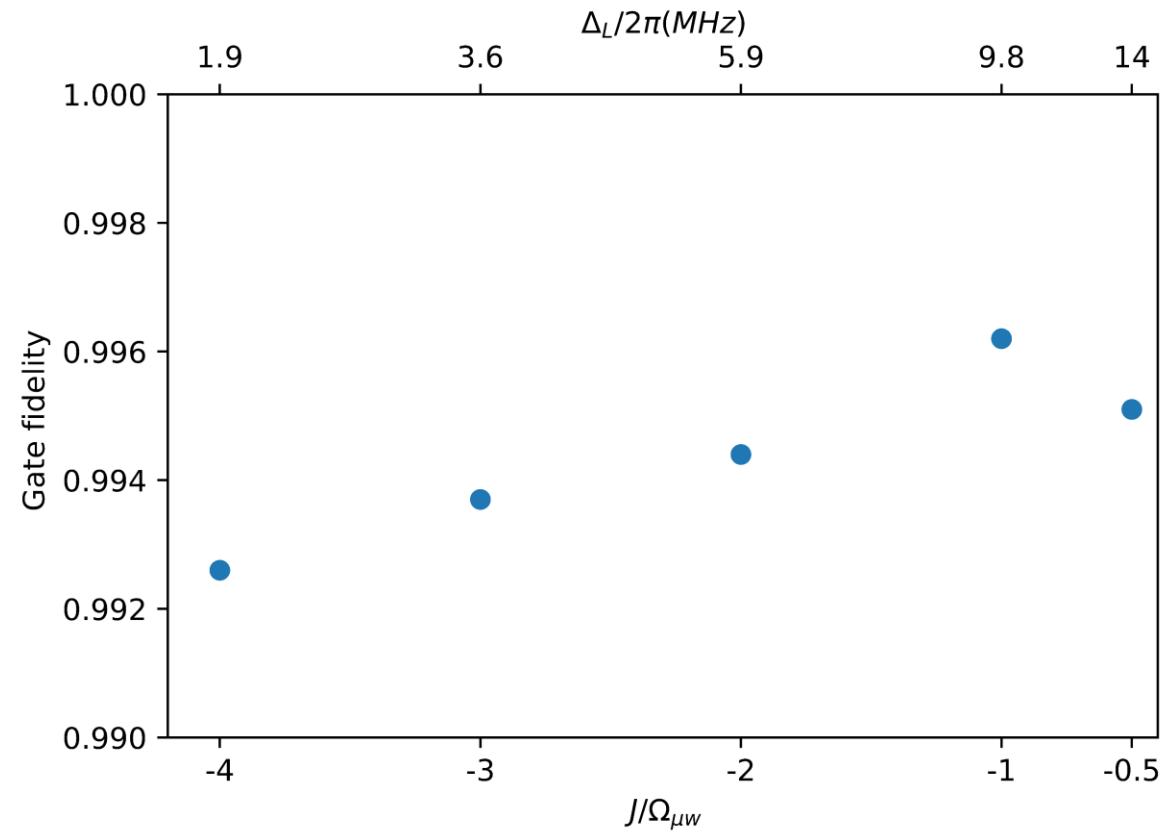
Limitations and usefulness

- One big limitation here: $J/2\pi \sim 1MHz$ $\Omega_L/2\pi = 12MHz, V_{rr}/2\pi = -40MHz$
 $V_{rr}/2\pi \sim 20 - 100MHz$ $\Omega_{\mu w}/2\pi = 0.5MHz$

But hey, it's fine if $J/\Omega_{\mu w}$ is small!

Also microwaves are slower than Lasers!

$$\Omega_{\mu w} < \Omega_L$$



Summary and outlook

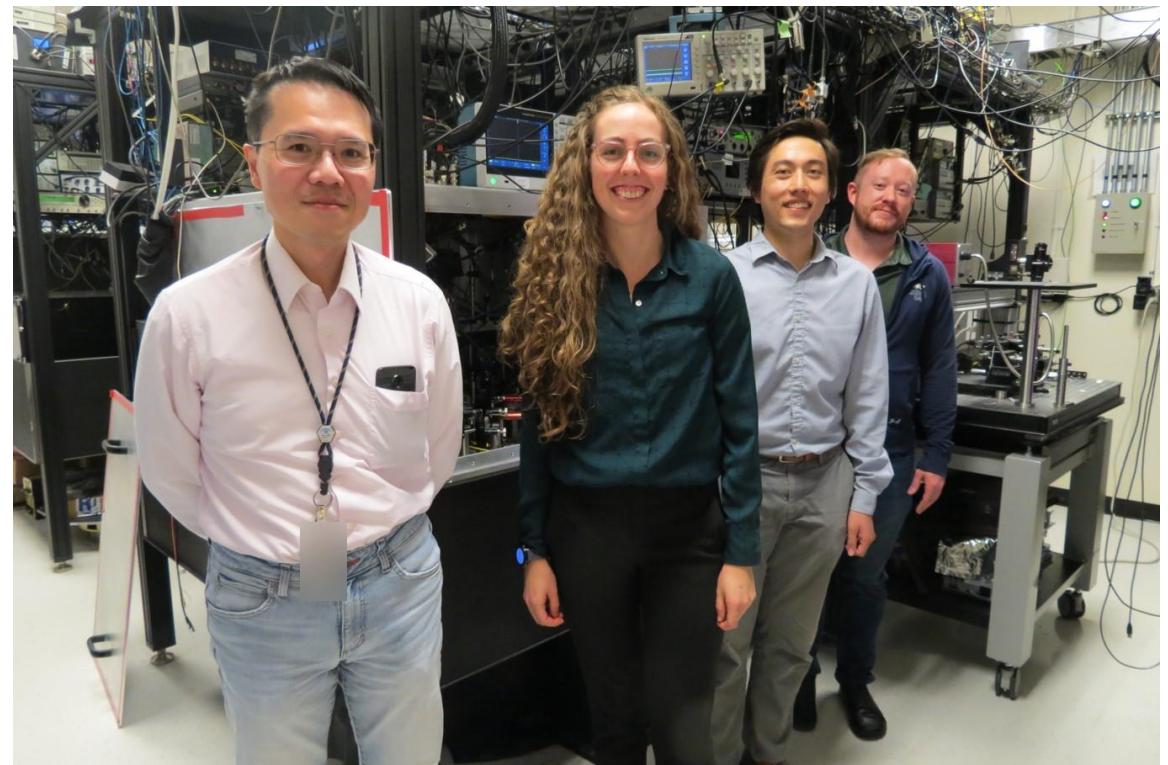
- Imperfect blockade is not a limitation, in fact it might be an advantage.
- Entangling protocols can be implemented in the microwave regime, and dressing can help fully exploit finite and weak blockades.

Other things I am not talking about here

- Adiabatic gates in the dressed regime
- Anti-blockade dressing for better fidelities

Collaborators

- UNM: Sivaprasad Omanakuttan and Ivan Deutsch.
- Sandia Collaborators: Yuan-Yu Jau, Matt Chow, Bethany Little.



Thank you for your attention!