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> I Introduction

Free-falling particle receivers (FFPRs)

- Heat transfer fluids: Ceramic particles (i.e. CARBO HSP, sand, etc).

- Advantages: Direct irradiance, high particle temperature (>1000°C), cost-effectiveness

- Disadvantages: High advective losses, short particle residence time, dispersive particle curtain

NSTTF FFPR test loop in 2018

Candidate commercial scale FFPR design

g&_‘ Particle curtain

Ho (2014)
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s | Multistage Receivers m
Multistage falling particle receiver (MFPR)

- Stable particle curtain, longer particle residence time, lower advective losses
Multi-stage falling
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(1) High-performing MFPR design in terms of thermal efficiency

Still requires (2) Investigation of MFPR performance at various commercial scales

(3) Investigation of MFPR performance under realistic environment (i.e. cloud cover, wind)




+ 1 Objectives
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To develop a high performing commercial scale MFPR geometry
To investigate the MFPR performance at various commercial scales

To investigate the MFPR performance at various incident solar heat fluxes and wind conditions

To develop a robust correlation to predict the thermal performance of a MFPR
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Higher thermal performance compared to a similar free-falling particle receiver (FFPR)
Better predictions of the MFPR performance at various commercial scales
Better predictions of the MFPR efficiency in realistic environmental conditions (e.g. cloud cover)

Correlation can be integrated into technoeconomic analyses
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s 1 Computational model
Cubit

- Geometry/mesh generation I

A

Aperture area

ANSYS Fluent® ()
- Material properties of CARBO HSP particles (~350 pm)

- Eulerian-Lagrangian model for the particle-laden flow

- Realizable k-¢ turbulence model z //L/

- Fluid-thermal coupling

North-pointing

Solar tower

Computational domain

- Non-grey discrete ordinate radiation model for radiative heat transfer Reflection i
- Forward velocity (~0.3m/s) for trough angle of 30° [Shaeffer et al. (2020)] Pl //““%x‘

- Particle drag model: Morsi & Alexander (1972) 5 “Ims A /
Simulation parameters - ‘

Accumulated
Particles

- Wind directions: N ~ SW

- Wind speeds (U,,): 0 ~ 15m/s

- Aperture area (4,): 25, 144, 324m?

- Incident solar radiative flux (Q,,/4,): 0 ~ 3MW/m?
- Inlet temperature: 888.15K

- Particle mass flow rate: 178kg/s (4,=25m?), 885.5kg/s (4,=144m?), 2864kg/s (4,=324m?)

Wind directions g

Shaeffer et al. (2020)



s | Improved thermal performance with a MFPR

Starting with a proposed high-performing 100MW, FFPR geometry

Incident solar power (Q,,) of 200MW; Aperture area (4,) of 144m?; Particle mass flow rate: 885.5kg/s
Best performing MFPR geometry: s,=12m, 5,=8m, /,=2m, /,=1m [Lee and Mills (2021]

Maximum MFPR efficiency: ~88% (5%-points greater than the FFPR efficiency)

Schematic diagram of FFPR Schematic diagram of MFPR

Particle Particle
releasing releasing




; | Comparison of flow and temperature fields between FFPR and MFPR
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s | MFPR performance for various incident solar heat flux (Q;,/4,) @!
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o | MFPR performance for various incident solar heat flux (Q;,/4,) @!
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Incident solar power scaled by 4™

- Data points of n and Q,_,/0,, collapse with m =1.2

- Data points of  converge to ~90% at 0, /4,'* ~ 0.75 regardless of receiver scales

|
o I MFPR performance for various incident solar heat flux (Q;,/4,) m
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1" I MFPR performance subject to wind

Advective losses are the main source of efficiency degradation.

NW or WNW winds are detrimental for thermal efficiency.

Vortices existing ahead of open aperture intensify the advective loss.
Effects of wind speed are significant for either NW or WNW winds.

1 vs wind direction 0,./0:, 0,./09;, Vs wind direction
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12 ‘ MFPR efficiency subject to wind at various scales
Parametric study

- NW or WNW winds are detrimental for thermal efficiency.
- Effects of wind speed are significant for either NW or WNW winds.
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13 I Correlation development

* Incident solar power (Q;5,), wind speeds (U,,), wind directions (6,,), Aperture area (4,)

= (Correlation function:

Correlation coefficients

A+ Bj + C§* + Dgu,,0 + EU,%0

where @ =

180—|6,,—180])F 180—|6,,—180
( I 1; D exp [_( 16y I

q — B_Qin/"qp

Thermal efficiency (1)

Efficiency Advective Losses % :

A 0.9351 0.0021 2 08
B -0.0560 0.1166 2

C -0.5519 0.2940 B 0.6
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12 1 Summary and conclusions

(0 MFPR geometry in a quiescent condition <

u The present MFPR geometry provides ~5% higher thermal efficiency compared

to the given FFPR geometry.

=  Thermal efficiency reaches ~90% at Q, /4,'>=0.75 regardless of receiver scales.

(0 MFPR efficiency under various wind conditions
= NW or WNW winds are detrimental for thermal efficiency.
u Entrainment of cooler ambient air into the receiver cavity becomes significant
due to vortices existing ahead of the open aperture.

. Increasing wind speed intensifies the advective loss.

 Correlation development
u R-square value ~ 92%, which is sufficient to predict the thermal efficiency.
u Different parameter inputs also need to be investigated for robustness.

(i.e. Particle inlet temperature)
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Corrclation thermal efficiency (%)
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1z | Improved thermal performance with a MFPR

Starting with Sandia’s candidate 100MW,_ FFPR geometry
Incident solar power (Q,,) of 200MW; Aperture area (4,) of 144m?; Particle mass flow rate: 885.5kg/s
Best performing MFPR geometry: s,=12m, 5,=8m, /,=2m, /,=1m [Lee and Mills (2021]

Maximum MFPR efficiency: ~88% (5% greater than FFPR efficiency at the same operating condition)

Schematic diagram of MFPR Schematic diagram of MFPR Incident solar radiative flux i
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19 | Improved thermal performance with a MFPR

- Thermal efficiency: Remarkably distinguished from whether the intermediate trough 1s positioned in S, ,

- Best performing MFPR geometry: s, s,, /,, ,
- Maximum MFPR efficiency: ~88% (5% greater than FFPR efficiency)
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