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Introduction
(]

Ablation

Ablative processes are important in many scientific and engineering problems

¢ Glacial erosion, fire protection, medical procedures, and industrial
manufacturing processes

e Ablative materials used as sacrificial heat shields for weapons, rockets,
and hypersonic reentry vehicles

— Accurate prediction of mass and energy loss necessary to minimize weight
and cost of heat shield

Changes in outer mold line from surface erosion important in hypersonic

flight

e Establishing credibility in ablative models is essential
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Introduction
o

Verification and Validation

Credibility of computational physics codes requires verification and validation

e Validation assesses how well models represent physical phenomena
Computational results are compared with experimental results

— Assess suitability of models, model error, and bounds of validity

¢ Verification assesses accuracy of numerical solutions against expectations

— Solution verification estimates numerical error for particular solution

Code verification verifies correctness of numerical-method implementation

Sandia National Laboratories



Introduction
o0

Code Verification

Code verification is focus of this work

e Governing equations are numerically discretized

— Discretization error is introduced in solution

e Seek to verify discretization error decreases with refinement of discretization
— Should decrease at an expected rate

¢ Use manufactured and/or exact solutions to compute error
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Introduction
oce

Code Verification

Code verification demonstrated in many computational physics disciplines

e Fluid dynamics ¢ Multiphase flows ¢ Fluid-structure interaction
¢ Solid mechanics ¢ Electrodynamics ¢ Radiation hydrodynamics
e Heat transfer e Electromagnetism

Existing ablation code verification has used simple exact solutions

We present an approach for developing nonintrusive manufactured solutions
e Manufactured solutions more thoroughly test code capabilities
e Approach does not require code modification

¢ Instead of introducing a source term, we manufacture ablation parameters
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Introduction
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Nonintrusive Manufactured Solutions

e Optionally transform governing equations
e Derive solutions that satisfy nonablating boundary conditions

e Manufacture parameters to satisfy ablating boundary condition
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Equations
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Outline

¢ Governing Equations
— Heat Conduction
Ablation and Boundary Conditions
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Equations
L]

Heat Conduction

For a solid, the energy equation due to heat conduction is
9]
5z (Pe) q

Internal energy e and heat flux q are modeled by

T A A
e=ey+ | c(T)dT, q=—-kT)VT
To
The heat equation is
oT
pcp(T)a - V- (k(T)VT)=0

p is constant density
¢p(T) is specific heat capacity
k(T) is thermal conductivity of isotropic material

@ Sandia National Laboratories



Equations

@00

Ablating Surface Parameterization

Time-dependent material domain is Q(t) with boundary I' = T'; U Ty
e Iy is ablating surface: I's = {(z,y) : ® = 25, y = ys}
arbitrarily parameterized by xs(&,t) = (z5(£, 1), ys(&, 1))
— £ €10,1] increases in counterclockwise direction

e Iy is non-ablating surface
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Equations
oeo

Recession Definition

Along T's, material recedes by s(&,t) in direction opposite to outer normal

Recession rate defined by

AE1) =~ (e, 1) male D),

where the outer unit normal vector is defined by

! 0] s
n,(¢,t) = { 0 { ’ }
V0,067 + (9e/06)* %6 1=
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Equations
ooce

Recession Rate and Heat Flux Modeling

B'(Ts, pe)C
Recession rate modeled by $(&,t) = w

Heat flux along ablating surface ¢; = qs - ng modeled by

QS = Ce [hw(T&pe) - hr] + PS [hw(Tsvpe;’) - hs(Ts)] + €U(T54 - T;l)

convective heat flux energy loss from ablation radiative flux

Ts(&,t) =T (xs(&,t),t) is temperature along ablating surface
pe(&,t) is pressure at outer edge of boundary layer

B'(Ts, pe) is nondimensionalized char ablation rate

Ce(&,1) is heat transfer coefficient (peueCh)

huw(Ts, pe) is wall enthalpy

hy(§,1) is recovery enthalpy

hs(&,t) is solid enthalpy, computed from hs(Ts) = hg + jITOS cp(T)dT
€ is emissivity

o is Stefan—Boltzmann constant

T, = 300 K is radiation reference temperature
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Verification
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Outline

e Manufactured Solutions
— Discretization Error
— Solutions
— Manufactured Solutions from Manufactured Parameters
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Discretization Error

A governing system of equations can be written generally as
r(u;p) =0
r represents equations, u(x,t) is state vector, and p is parameter vector
Discretize in time and space to get
rp(up; p) =0
r}, is residual of discretized equations and uy, is solution to discretized equations
Discretization error is ey = u;, — u, and its norm ||ey|| = ChP

C' is function of solution derivatives
h is measure of discretization size
p is order of accuracy

Convergence studies of |ley|| to measure p
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Solutions

ey can only be measured if u is known

Exact solutions

¢ Negligible implementation effort: r(ugxact; ) = 0

e Limited cases, span small subset of application space
Manufactured solutions from forcing vector

¢ Do not satisfy original equations: r(upg; ) # 0

¢ Require source term: rp(up; p) = r(ums; @)

e Manufactured to exercise features of interest
Manufactured solutions from manufactured parameters

e Favorable properties similar to traditional manufactured solutions

e Negligible implementation effort: r(u; pyp) =0
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Verification
L]

Manufactured Solutions from Manufactured Parameters

e Manufactured parameters do not require code modification
e Compute u from solutions to governing equations

¢ For unsatisfied boundary conditions, manufacture underlying parameters
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Solutions
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Outline

e Heat Equation Solution
Time Dependency
— Cartesian Coordinates
— Polar Coordinates
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Solutions
[ Je]

Heat Equation Solution

For k(T) = kf(T) and ¢,(T) = ¢, f(T), heat equation is

00
P EGA =
5 alAf =0,

where 0= / f(T")dT" + C, = F(T) (Kirchhoff transformation)
Jr

Disregard time dependency of domain and assume we can separate variables:
o ole o
E : E : t)eij(x
i=0 j=0

©;,j(x) is orthogonal basis
i and j are indices associated with the basis of different spatial coordinates
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Solutions
oe

Time Dependency

Inserting solution expression into equation yields
10,00 _ Avig(x) _
=3 =—Aij

af; (1) @i, (x)

For the time dependency,
0ij(t) = 0 pe Nt

Interested in A; ; <0
e Focusing on ablative processes and interested in verifying time integrator

e Interested in cases where temperature increases with time
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Solutions

Cartesian Coordinates
Separate x and y dependencies:
0ij(x) = ui(z)v; (y)

From v}(0) = vj(H) = 0,

: &

v;(y) = cos(jmy/H) = /g

From «/(0) = 0, :;: i{
us(z) = {cosh(,uix) for ,uz <0 &8% ‘%/?’S
cos( i x) for u7 >0 [ \2/

w; depends on BC at z = x4, and

Aijj = sl +V?>

where v; = jn/H
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Solutions
L ]

Polar Coordinates

Partially separate  and ¢ dependencies:

@LJ(X) = uu( )UJ(d))

From v}(0) = vj(¢) = 0,
01(9) = cos(jd/)
From «/(rg) = 0 and letting ' = /| \; 5|7,
Ki:jllf_j (T‘/) + L‘,_]jK,,]. (7‘/) for )\7;,]' <0

Ui, j (r) = Y;',,ij] (’f'/) + J/L'A’jY,,j (7’/) for A\;; >0
cosh(vjIn(r/rg)) for A\;; =0

Aij depends on boundary condition at r = rg, and v; = jw/¢

I, and K, are modified Bessel functions of 15¢ and 2" kind J, and Y, are Bessel functions of 15¢ and 2" kind
Kij= I\’ul—l("(/)) + ]/\’r//+1(7'(/)> YIJ = Y;/ 1 '/) - Y;Q+1<7'(,))
Lij = L,-1(ry) + L+1(rp) Jij = =Ju;—1(r0) + Ju;+1(rp)
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Reconciliation
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Outline

¢ Boundary Condition Reconciliation
— Overview
— Manufacture Temperature and Ablating Surface
Manufacture Parameters
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Reconciliation
[ ]

¢ Solutions disregard boundary condition on ablating surface
¢ Manufacture underlying functions of ablating boundary condition

e Can manufacture arbitrary solutions without adding source term

Much freedom, provided functions are sufficiently smooth

¢ Desirable properties take precedence over being physically realizable
— Sufficient number of finite nontrivial derivatives

— Elementary function composition
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Reconciliation
o

Manufacture Temperature and Ablating Surface

Manufacture T'(x,t), which requires manufacturing
e Material properties: k(T) = kf(T), c,(T) = ¢,f(T) p, and €
— /;,', Cp, P — &
— f(T) relates 0(x,t) and T'(x,t)
— Manufacture f(7) to easily compute integral F(T) and its inverse F'~*(0)

e Transformed temperature: 0(x,t)

— Truncate 0(x,t) = 3275, Z;io 97&.7’(15)9977,.7' (%)
— Specify éi‘jo in 6’2;1]‘ (t)

— Specify p; in u;(x) and A; ; (Cartesian) or Ai,j (polar)
« Compute temperature from T(x,t) = F~1(0(x,t))

Manufacture x4(£,t) to compute ng(&,t) and $(&,t)
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Reconciliation
e0

Manufacture Parameters

Manufacture parameters to satisfy boundary condition on I'y:

or

—k?(TS)% =

sz [hfu;(Ts:pn) - h/r] + /)5 [h’u:(Tsape) - hs(Ts)] + FO’(qu - Tr/l)

and recession rate:

B/(Tsv Pe)Ce,
P

s(et) =
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Reconciliation
e0

Manufacture Parameters

Manufacture parameters to satisfy boundary condition on I'y:

or

% =C, [h/w(Ts‘:pn) - hr] + ps [hu:(Tsape) - hs(Ts)] + 60’(T.s4 - Tr/l)

—k (Ts)
and recession rate:

B T, pe)Ce
(e 1) = PTp)Ce

. %, Ts, k(Ts), p, €, T), and $(,t) already determined

@ Sandia National Laboratories



Reconciliation
e0

Manufacture Parameters

Manufacture parameters to satisfy boundary condition on I'y:

or

% =C, [h/w(Ts‘:pn) - hr] + ps [hu:(Tsape) - hs(Ts)] + 60’(T.s4 - Tr/l)

_k(TS)

and recession rate:
B/ Tg7 De C’,
S(f,t) - 7( - pé) c

. %, Ts, k(Ts), p, €, T), and $(,t) already determined

o hg(Ts) = ho + j}ff ¢p(T)dT computed from Ty and ¢,(T)

@ Sandia National Laboratories



Manufacture Parameters

Manufacture parameters to satisfy boundary condition on I'y:

or

% =C, [h/w(Ts‘:pn) - hr] + ps [hu:(Tsape) - hs(Ts)] + 60’(Tg4 — Tr/l)

_k(TS)

and recession rate:

B/ Tw/ e C’e,
s 1) = Fepe)Ce

. %, Ts, k(Ts), p, €, T), and $(,t) already determined
o hg(Ts) = ho + j}ff cp(T)dT computed from T and ¢,(T)

» Manufacture B'(Ts, p.) and p.(&,t)
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Manufacture Parameters

Manufacture parameters to satisfy boundary condition on I'y:

or

= Ce [hw(Ts,pe) — hy] + pé [hw (Ts, pe) — hs(Ts)] + ea(ﬂ4 — T/l)

_k(TS)

and recession rate:

B/ Tw/ e Ce,
s 1) = Fepe)Ce

. %, Ts, k(Ts), p, €, T), and $(,t) already determined
o hg(Ts) = ho + j}ff cp(T)dT computed from T and ¢,(T)
» Manufacture B'(Ts, p.) and p.(&,t)

* Ce(&,1) computed from $(¢,t), B'(Ty, pe), pe(§;t), and p
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Manufacture Parameters

Manufacture parameters to satisfy boundary condition on I'y:

or

% =C, [hw(TSape) - hr] + ps [h/w(Tsape) - hs(Ts)] + EO'(TJ - Tr/l)

_k(Ts)

and recession rate:

B/ Tw/ e Ce,
s 1) = Fepe)Ce

. %, Ts, k(Ts), p, €, T), and $(,t) already determined
o hy(Ts) = ho+ j}ff ¢p(T)dT computed from Ty and ¢,(T)
» Manufacture B'(Ts, p.) and p.(&,t)

o C.(&,t) computed from $(&,t), B'(Ts, pe), pe(&,t), and p

o hy(Ts,pe) and h,.(€,t) need to be determined
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Reconciliation
oe

Manufacture Parameters (continued)

Boundary condition and recession rate can be combined:

qs = Cﬁi (hw(Tsape) [1 + B/(Ts:psﬂ - h"r - B/(Tsape)h’s(Ts)) + EU(T;I - T1)

T

e Prevent BC instabilities due to perturbations (e.g., discretization errors)

e Tmpose 2% > 0 so perturbations do not grow
pose Fr, p g

e For radiative contribution, %(%.;,(L) =4eaT3 >0

e For non-radiative contribution, set %(qsmmm.) =0:
h’w(Tsaps) [1 + B/(Tsaps)] - B/(Ts-,pe)hs(Ts) - g(pe)

B'(Ts, pe)hs(Ts) + g(pe)

— hqu(Teape) = 1+ B’(Ts,pe)

e Set g(pe) =0

e h,(&,t) can be computed since other parameters are known

@ Sandia National Laboratories



Numerical Examples
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Outline

e Numerical Examples
— Overview
— Cartesian Coordinates
— Polar Coordinates
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Numerical Examples

000

or \ or \
—(z,0,t) =0 —(r,0,t) =0
Ay @ ) Ao b )

¢ Demonstrate methodology on two problems: Cartesian and polar

e Spatial domain discretized with O(h?) finite elements

Backward Euler time integration is O(h)

Each discretization doubles elements in each dimension, quarters time step

e Piecewise linear interpolation of tabulated data is O(h?) — halve spacing

Sandia National Laboratories



Numerical Examples
(o] le}

Error Norms

Measure error in temperature using the norm

er = max ||[Th(x,t) — T'(x,1)
te(0,1]

2

o L2-norm of error computed over spatial domain

e Maximum of L2-norms over time

Measure error in ablating surface using the norm

ex, = max |[xs, (€ 1) = xs(&, 1)),

tel0, ]

e L2-norm of error computed over ablating surface
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Mesh Deformation and Common Parameters

Mesh deformation from Gent hyperelastic mesh stress model

p = 1000 kg/m3, k = 0.7 W/m/K, a& = {1078,1077,107%,107°} m?/s — ¢,
e With (¢ = 0.9) and without (¢ = 0) radiative flux
e Quartering (At/4) and halving (At/2) the time step

¢ Manufacture

@ Sandia National Laboratories



Numerical Examples
@000

Cartesian Coordinates: Temperature and Recession

\1/3 - 1/4
* Manufacture f(T) = 4/3 (T/T) " — T(x,t) = F~1(0) = (T0(x,1)*)
~ T'=3000 K
* Truncate 6(x,t) = 32722252 éi‘,j(t)tpi,j(x) to maxi =0 and maxj =1

— ug(x) = cosh(3z/(2W)) permits x variation and A; ; <0
Set fo,0, = 400 K and 6,1, = —100 K

— 0(x,t) = 100e22:500at (4 — g—2500n%at cos(wy/H)) cosh(3z/(2W)) K

— vo(y) = 1 and vy (y) = cos(ny/H) permit y variation and 0(x,t) > 0
x)

e Manufacture x4(&,t) = {W/ <1 — %%) , HE}

— Initial domain is rectangle x4(&,0) = {W,H}
— & related to x5 by £ = ys/H
— Set W=1cm, H=2cm,andt=5s
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Numerical Examples
0e00

an Coordinates: Temperature and Recession (a = 107° m?
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Examples

ian Coordinates: Norm of the
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ian Coordinates: Norm of the

Examples
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Numerical Examples
9000

Polar Coordinates: Temperature and Recession

e Manufacture f(T) =1 — T(x,t) = 0(x,t)

* Truncate 0(x,t) = >27% 2272 éi‘,j(t)cp,;’j(x) to maxi =0 and maxj =1
— v9(¢) = 1 and vy (@) = cos(mp/¢) permit ¢ variation and 6(x,t) > 0
Set Moo = Ao = —22,500 m~2 for ug o(r) and ug 1 (r)
— Set 09,0, = 200 K and 61, = 300 K

o Manufacture x5(&,t) = r5(&, t) {cos @5, sin ¢s}

re(6,t) =1 — (1] — 7'0)%73“0;(”5)
— Initial domain is fractional annulus x4(&,0) = r1{cos ¢, sin ¢}
€ related to x, by € = ¢,/

— Setrg=1cm, r =2cm, ¢ = 7/2,and t =5 s
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Numerical Examples

(e]

Polar Coordinates: Temperature and Recession (a = 107> m?/s)
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Polar
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[e]e]e] )
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Summary
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Outline

e Summary
— Code-Verification Techniques
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Summary
[ ]

Code-Verification Techniques

¢ Performed code verification for two-dimensional, non-decomposing ablation
¢ Derived solutions that did not require code modification

¢ Computed solutions to heat equations for different coordinate systems

e Manufactured boundary condition dependencies

¢ Demonstrated approach for two cases, which achieved expected accuracy
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Additional Information

e B. Freno, B. Carnes, N. Matula
Nonintrusive manufactured solutions for ablation
Physics of Fluids (2021)

e B. Freno, B. Carnes, V. Brunini, N. Matula
Nonintrusive manufactured solutions for non-decomposing ablation in two dimensions
Journal of Computational Physics (2022) arXiv:2110.13818
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