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Motivation

» Simulation of hypervelocity impact and solid-solid
interactions
» Applications:
. Ballistic penetration [2]
*  Geodynamics [3]
*  Spacecraft design [4]

» Challenges:

* Non-linear wave propagation

hock induced structural d 1 . . .
shock induced structural damage [1] * Large plastic deformations, fragmentations

1] .

[2] Shen Wei and Wu Cuisheng. Computer simulation for damage-failure process of composite plate under high-speed impact. Engineering fracture mechanics,
1992

[3] Francois E Heuz'e. An overview of projectile penetration into geological materials. In International journal of rock mechanics and mining sciences &
geomechanics abstracts, Elsevier, 1990

[4] MV Silnikov, IV Guk, AF Nechunaev, and NN Smirnov. Numerical simulation of hypervelocity impact problem for spacecraft shielding elements. Acta

Astronautica, 2018
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https://commons.wikimedia.org/wiki/File:Shock_tube.JPG

Hydrocode: codes used to simulate highly dynamic events involving shocks

Lagrangian Hydeocodes Eulerian Hydeocodes Coupled Lagrangian-Eulerian
* Nodes are attached to material * Materials are tracked across a fixed
. * Projectile: Lagrangian description

points. mesh.
« Explicit material boundaries - Fixed mesh, large plastic * Target: Eulerian description
» Easier to apply interface conditions. deformations. . Leverage advantages of both
* Mesh distortion * interfaces are not tracked explicitly

) ) approaches

* Need re-meshing/ element deletion * Benson [3], Udaykumar et. al. [4]

strategies » Zapotec [5]
* DYNA [1], Camacho and Ortiz [2]

[1] JO Hallquist and RG Whirley. Dyna3d user manual, nonlinear dynamic analysis in three dimensions. Report UCID-19592, Rev, 5, 1989.

[2] GT Camacho and M Ortiz. Adaptive lagrangian modelling of ballistic penetration of metallic targets. Computer methods in applied mechanics and
engineering, 1997

[3] DJ Benson. A multi-material eulerian formulation for the efficient solution of impact and penetration problems. Computational mechanics, 1995.

[4] HS Udaykumar, L Tran, DM Belk, and KJ Vanden. An eulerian method for computation of multimaterial impact with eno shock-capturing and sharp
interfaces. Journal of Computational Physics, 2003

[5] Bessette et. al., Zapotec: A Coupled Euler-Lagrange Program for Modeling Earth Penetration (2002)
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» Modified Immersed Finite Element Method (mIFEM) [1]
* Non-conforming mesh method, partitioned approach

* Inspired from IB method [2]

» Comparison with classical IB:
* Volume based interpolation
* Solve solid dynamics and enforce it on overlapping fluid

* Solid has constitutive relationship and yields stress

information

[1] Xingshi Wang and Lucy T. Zhang. Modified immersed finite element method. Computer Methods in
Applied Mechanics and Engineering, 267:150-169, 2013.

[2] Charles S Peskin. The immersed boundary method. Acta Numerica, 11:479-517, 2002
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Background

OpenlFEM
» OpenlFEM [1}:

*  Opensource, C++

*  Modular implementation of mIFEM

» Objectives:
*  Couple a multi-material Eulerian shock physics
code SABLE [2] with OpenlFEM for simulation

SABLE

(Eulerian) of solid-solid impacts.
*  Couple OpenlFEM and SABLE non-intrusively.

*  Provide framework for coupling two

hydrocodes.
Fluid Solver
(Eulerian)
[1] hitps://github.com/OpenlFEM
[2] KM Hays et al. A users guide to sable 2.0: The sandia automated boolean logic
evaluation software. Sandia National Lab. (1996)
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mIFEM Algorithm: Domain decomposition
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mIFEM Algorithm: Formulation

virtual work done by the Eulerian material virtual work done by the Lagrangian material

Due , Do} |
/ﬂﬁw(pﬁ— Oij pgz)dﬂ+fﬂlﬁvs( Dt ~ Tijj — pgz-)dﬂ=0
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mIFEM Algorithm: Governing Equations

Lagrangian

Eulerian
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mIFEM Algorithm

T“+1

" + At

1. Solve governing eq. for
Lagrangian materials

2. Update indicator field to identify
artificial domain 01

I(x,t) = 1, xet
E_L'.rl X §

® + I(x, t)p!

4. Evaluate interaction force in {2

fint — . 1 v-gt ll
° @ Plbr o,

i 'D 1..-1 'E“..- G ")

5. Solve governing eq. for Eulerian
material

6. Interpolate Eulerian stress from
Eulerian region [1° onto solid
boundary I'!

7. Evaluate traction on Lagrangian
boundary I'!

Cheng J et al., OpenlFEM: A high performance modular open-source software fluid-structure

interactions. (2019)

W) Rensselaer

Modular Implementation

- Lagrangian Solver
- Eulerian Solver
- Interaction Solver
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OpenlFEM-SABLE Coupling

» Coupling via information exchange using MPI protocols MPI_COMM WORLD

MPI AppNum:0
1. Launch OpenlFEM and SABLE:

* mpirun -np n OpenIFEM : -np m SABLE

2. Find total number of applications running simultaneously:

 GetMPI APPNUM using the function

MPI Comm get attr

-l
MPI AppNum:1

. Processors running OpenlFEM

‘ Processors running SABLE
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3. SplitMPT COMM WORLD into two / \
communicators using function:

MPI COMM split

MPI ISend/

MPI IRecv

4. Switch to MPI_COMM WORLD and

exchange data using MPI ISend and

MPI_IRecv K /

. Processors running OpenlFEM

‘ Processors running SABLE
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OpenlFEM-SABLE Coupling

SABLE 4mTrrem) OpeniFEM
= = == X4 Eulerian mesh setup, }_ -

initial velocity, stress
J

m Time Loop
————————————— - time step |-——————————————— -LagrangianSnlmer

Lagrangian Solve, - OpenlFEM-SABLE
Update position, stress wrapper

- Interaction Solver

Py

indicator, interaction
force

Update indicator field and calculate

interaction force

Update density field g,
Apply interaction forces

---------- Save Eulerian velocity and stress

L

olue el Rl Update Lagrangian boundary
conditions

Eulerian
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Improvements in mIFEM for solid-solid coupling

Eulerian element

Lagrangian element

r 4

Improved Interface

Check intersection of each Lagrangian cell
bounding box with Eulerian cell

Sample points in bounding box.

Check if the point is inside the selected
element.

Exact indicator from current Lagrangian cell

— Area (intersection box) . points inside solid cell
Area(cell) total points sampled

Repeat for all the elements.
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Improvements in mIFEM for solid-solid coupling

~ Added mass effect (1, (21:

) L 9
g \ \ ® + |nertial effect of Eulerian solid

® ® ® ® ® * Increase effective forces on Lagrangian solid

* Calculate lumped mass for Eulerian solid.

® Il;gg;adr;gr;/an * Interpolate Eulerian nodal mass to Lagrangian
l boundary nodes
@ ®
- » Calculation of stable time step:
@ + SABLE: explicit hydrocode
+ Stable time step At = a * f(h, CE)

» h: grid size, CE: elastic wave speed for Eulerian
material, a=0.85

« Stable time step for coupled run:
[1] Panton, R.L., Incompressible Flow, JohnWiley and Sons (1984)

[2] Brown et. al. Coupled Eulerian-Lagrangian methods for earth s = CE;"CL
penetrating weapon applications, Sandia National Laboratories
(2002) « At = B = a*f(h,CE)
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Test Case 1: Setup

void

25.6 cm

Target: concrete

I‘— 25.6 cm —’Ii

Projectile # Eulerian (target):
. Material: void + concrete

. Concrete:
. Material mode: elastic-plastic
¢ . Compressive strength: 23 Mpa
. Density: 2.03 g/cm?
. BCs: no displacement at all sides
. Mesh: dx=dy=0.1 c¢m

2cm

~ Lagrangian (projectile):
. Material: 4340 steel

£
o
@ . Material model: linear elastic
. E:20GPa v:0.28
*+  Density: 7.8 g/cm?
. Mesh: dx=dy=0.1 em
. Initial velocity: -50,000 cm/s
R #  Simulation time; Se-4 s

R=1cm
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Test Case 1: Results

Target velocity (cm/s) Target pressure (dyn/cm?) + Projectile velocity (cm/s)

9.6e+03
[ BOOOD

i
5
000 O
o]
b
1
4000 Z
2000 &
0.0e+00
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Test Case 1: Results

Projectile Results

le6 lell
2.00
—11 ——- SABLE
1.75 1 —— OpenlFEM-SABBLE coupled

_2 -
- 1.50 4
£ 5
E —3 T put
) 21,251
>4 &
€ 3 1.00
2 @
§ 2 £ 0.75
I []
) £
g —6 - 0,50 -

-7 1 —-—- SABLE 0.25 1

—— OpenlFEM-SABBLE coupled _—
-8 0.00
0.0000 0.0001 0.0002 0.0003 0.0004 0.0005 0.0000 0.0001 0.0002 0.0003 0.0004 0.0005
time (s) time (s)
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Test Case 1: Results

Target Results

le6 lel0
1.5 [/ === SABLE t\l === SABLE
' —— OpenlFEM-SABBLE coupled 104 ,' —— QOpenlFEM-SABBLE coupled
: I
1
= 1.0 :
r QEJ‘ 0.8 - I
2 0.5 g i
3 & !
E 064 |
5 0.0 5 |/
JEI .!
g % 0.4 1
o —0.51 £
E ¥4
1.0 021
-151 0.01
0.0000 0.0001 0.0002 0.0003 0.0004 0.0005 0.0000 0.0001 0.0002 0.0003 0.0004 0.0005
time (s)

time (s)
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Test Case 2: Setup

7Y » Eulerian (target):
air . Material: air + concrete
, Air:
. Pressure: 16 dyn/cm?
. Density: 1.2e-3 g/cm?
. Concrete:
. Material mode: elastic-plastic
. Compressive strength: 23 Mpa
. Density: 2.03 g/cm?

BCs: no displacement at all sides
. Mesh: dx=dy=0.1 cm

25.6 cm

Target: concrete
» Lagrangian (projectile):
. Material: 4340 steel
. Material model: linear elastic
. E:20GPa v:0.28
. Density: 7.8 g/cm®
. Mesh: dx=dy=0.1 cm
. Initial velocity: -50,000 cmis

PE— —
25.6 cm
#  Simulation time: 5e-4 s
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Test Case 2: Results

Air velocity x (cm/s): OpenlFEM-SABLE Air velocity x (cm/s): SABLE
coupled

[ 1.78+04 l 1.7w404

10000 +— 10000
son % - 600

1

. E

a

5 6
5000 B 5000 W
-10000 -10000
-1.Te+0d 1.7+

A
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Test Case 2: Results

Air velocity y (cm/s): OpenlFEM-SABLE Air velocity y (cm/s): SABLE
coupled
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Test Case 3: Setup

Oblique impact: 6 = 25°

Eulerian (target):

. Material: void + concrete

+  Concrete:
»  Material mode: elastic-plastic
+  Compressive strength: 23 Mpa
«  Density: 2.03 g/cm?

«  BCs:no displacement at all sides

. Mesh: dx=dy=0.1 cm

Lagrangian (projectile):
. Material: 4340 steel
«  Material model: linear elastic
- E:20GPa v:0.28
. Density: 7.8 g/cm?®
. Mesh: dx=dy=0.1 cm
. Initial velocity: -50,000 cm/s

Simulation time: 5e-4 s
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Test Case 3: Results

Target velocity (cm/s) Target pressure (dyn/cm?) + Projectile velocity (cm/s)

PRESSURE
H2ee8 O la+f  2e4%  Daed A Al

velecities Mognihude

WELOCITY . Mognitucks
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Test Case 3: Results

Projectile momentum (y) Projectile momentum (x) Projectile kinetic energy
le6
lell
_14 === SABLE e 0 2.00 SABLE
—— OpenlFEM-SABBLE coupled - -
] L= 1.75 1 —— OpenlFEM-SABBLE coupled
/,

’\"? ’\v? -1 1.50 A
E 31 E B
= = L 125
=4 z ] )
1S £ @ 1.00 4
2 2 5
c -5 =4 U
() ) = 4
g g T 0.75
=} =] -3 c
E -61 = * 050

—74 —-- SABLE 0.25 4

-4 —— OpenlFEM-SABBLE coupled
-84 : : . . . . . . . . . 0.00 1
0.0000 0.0001 0.0002 0.0003 0.0004 0.0005 0.0000 0.0001 0.0002 0.0003 0.0004 0.0005 0.0000 0.0001 0.0002 0.0003 0.0004 0.0005
time (s) time (s) time (s)
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Test Case 3: Results

Target momentum (y) Target momentum (x) Target kinetic energy
leb 1lel0
0.2
3 -=-- SABLE 104 it --- SABLE
1.0 1 00 ‘\ —— OpenlFEM-SABBLE coupled ' ,' " —— OpenlFEM-SABBLE coupled
B A 1 1
[l ]
= = 1 _ 0.8 '
< 054 2 ! =) !
-0.2 o
& E “\ 8051 |
£ 00 e \ 2 !
E E ! o )
g T —0.6 \ 2 0.4
£ —-0.5 £ | g
o o \ M
£ £ [l
\ —0.8 1 0.2 1
A\ \ :
~1.0 - \ -—- SABLE \
W —— OpenlFEM-SABBLE coupled ~1.0 1 \/ 0.0
0.0000 0.0001 0.0002 0.0003 0.0004  0.0005 0.0000 0.0001 0.0002 0.0003 0.0004  0.0005 0.0000 0.0001 0.0002 0.0003 0.0004  0.0005
time (s) time (s) time (s)
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Test Case 3: Results

SABLE run: comparison with Lagrangian projectile Target at t=5e-4 s

OpenlFEM-SABLE

coupled

l A, 004

VELOCTY . Magnihucie
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X Axis
10 08 06 04 02 00 02 04 06 08 10 > 5 Plexiglass balls loaded by a high-pressure gas

with moveable plexiglass walls
> Eulerian:
- High-Pressure Gas Region
*  (xy)=(0.0, 0.0), Radius = 0.3 cm
* Initial Pressure: 108 dynes/cm?
- Low-Pressure Gas Region
* Initial Pressure: 105 dynes/cm?
* Initial Density: 1 gm/cm3
> Lagrangian:
- Plexiglass balls, Radius = 0.1 cm

«  Ball-1: (x,y) = (-0.4330,0.2500)
«  Ball-2: (x,y) = (-0.2500,0.4330)
«  Ball-3: (x,y) = ( 0.0000,0.5000)
«  Ball-4: (x,y) = ( 0.2500,0.4330)
«  Ball-5: (x,y) = ( 0.4330,0.2500)

- Plexiglass properties
*  Hyperelastic Neo-Hookean material
* ¢1=4.85e11 dynes/cm? c2 = 1.35e12 dynes/cm?
*  Density: 1.18 gm/cm?
»  Simulation time: 6e-4 s

1.0 0.8 0.6 4 02 0.0 02 0.4 0.4 0.8 1.0
X Axis

KV
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Gas pressure (dyn/cm?);: SABLE Gas pressure (dyn/cm?); OpenlFEM-SABLE coupled
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Test Case 4: Results

Ball-1:

S S
1.3 =——balll-xp - R n WS P P N
— balll-yp ExE T POSETION - 3 gl - /'
— palla=walla. hia POSITION. 1 .
balls-walls.his ¥YPOSTITION '.]' Eulerian

Position [cm]
|
IIII
\

i Pt
e e

%'N“'\f""‘-\.\_,-'-\-\__.-'-u_,\_,r—;
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Test Case 4: Results

Ball-2:

Ball-2 Leaves the Eulerian Domain

W
E E 1 —_— 1 =t N VELOCITY
1. r _— 1 ywaloel it ¥ VELOCITY
5] =] . JE—
o — —— bBalls-walls.kis VELOCITY X.1 .
= = Balls-walls.his VELOCITY ¥ :} Eulerian
=
(=] O 0.0e
= o
W o
. >
. 1.083 4
1. -
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Test Case 4: Results

Ball-3:

ball3 tut VE
bail tat VELOC
T - —balle i VELGEITY i
i 1.Cal
- balls L VEL T ¥
#

LY

X POSITION
- = =balld¥-yposition.tkt ¥ POSITION

Velocity [cm/s]

lig-walls.his XPOSITION,D .
y 1r--:"7'.'-':.-} Eulerian

Position [cm]
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Test Case 4: Results

Ball-4:

1

L=y itd
ballp=walla.hiz KFOSITLON. 4

1

s YPOSITION. 4

w
=z L E
s S
O L0 L ‘3\
o Q
= =0
Wo.ed L 1
S 3

i = = e
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Test Case 4: Results

Ball-5:

1.5 4 tTroN L
N T T ————
ITICH. 5 .
} Eulerian
— 2.0el~ =
[72] 4
- "
E E oy st
o T N
1.8 4 8 i~ —~r" .
.U. — ) - - \‘\_j\,_’h;/-\/\»_”»rJ‘.;‘rﬂ.;v\,‘
= 1ens \ L
5 c l
— Q lI.I — —ballS-xvelocity.txt ¥ VELOCITY
o (3] \ — —ballS-yvelesity.txt ¥ VELOCITY
O > | —_balls-walls.his VELOCITY ¥.5
o o.s- F balls-walls.his VELOCITY ¥.5
0.0ed o =
—.rJ{\vJﬁ‘N"'.‘JJ'U\-—'\'J\-"‘\‘,f\.A-\.r_\_, Sl
3.8 L -1.0e3 - L
1 1 1 1 T 1 T 1
T T | =4 LEL] B, D=4 0.0e-4 2.0e— 4. 0e-4 6. 0e—4
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Low-Pressure Air

Detonation
Point

- Eulerian Domain:

o

(=5.0,0.0) < (x,y) = (15.0,20.0) [em]

Mesh size: h = 0.1 [cm]

Low-Pressure Air: P = 10 [dynes/cm?]

High Explosive: (2.5,4.0) < (x,y) < (7.5,10) [cm]
Tracer Location: (x,y) = (4.5, 12.5) [cm]

» Lagrangian Solid:

Ball Position: (x,y) = (4.5, 12.5)

Linear Elastic material

Density: 7.8724 [g/cm?]

Young's Modulus: E =200 x 10'% [dynes/cm?]
Poisson'sratio:n =0.28

Mie Gruenesien EOS for Eulerian simulation
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Gas pressure (dyn/cm?): SABLE Gas pressure (dyn/cm?): OpenlFEM-SABLE coupled

I— 1.0e+09

— B3

o
3
1]

-4

0

]

a
a
&
o
o

40
5/26/2022




» Develop framework for simulation solid-solid interaction and impact using modified Immersed
Finite Element Method.

» Non-intrusively couple OpenlFEM and SABLE.
» Penetrator: Lagrangian description, Target: Eulerian descritption
» Future Work:

» Extend coupling for 3D simulations.

* Investigate application of a contact model.

» Validate coupling with literature reported test cases.
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