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*“Motivation: Agile simulation of complex assemblies

hermetic
electrical
connector

stress field in glass seal
after manufacturing

« Goals of simulation can vary during design process.
 Heuristics are often used to defeature geometry.

e Heuristics are used to construct finite element mesh.



s | Motivation: Typical domain (geometry) teatures

thread

fillet

chamfer

In engineering applications, domains
typically contain numerous geometric
features that are unimportant for the
goals of the simulation.



M otivation « GBCs provide framework for broad class of discretizations,

both element based and element free.
« Can unify both classes of discretizations.

element based

element free



5‘ Motivation: element-based polyhedral
discretizations
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. | Motivation: element-based polyhedral
discretizations

von Mises stress field

Gls)=

—0

fixed (8 holes)
= N
(T2 N\
o C )




7‘ Motivation: element-free discretizations

nodes basis functions stress field (vm) ‘




Outline

1. motivation

2. GBC approximation

3. GBC application to quadrature

4. conjugate basis

5. element-based applications

6. element-free applications (weight functions using manifold geodesics) |
/. summary



Geometry to function approximation

Bernstein polynomial b; ,(t)

1.2

1

control points P; i=0,...,n 02 02 04 06 08 i
t

provide affine invariance (scaling, rotation)
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eometry to function approximation




"I Bernstein polynomial, a GBC-type approximation

Bernstein polynomial By (t) := Zﬁn b n(t)
i=0

Bernstein basis polynomials of degree n

bin(t) i= (7?

(4

n
3 b=
1=0
"
— bz’,n =1
n
1=0

)t%l—wmﬂ i=0,...

—

partition of unity

linear reproduction

, N

= affine invariance

=

1.2

1

Note that b; »(t) are notinterpolating

Bernstein polynomial b; ,(t)

0 0.2 0.4 0.6 0.8 1

t

except at endpoints.



2 I Function approximation using Bernstein polynomials

Weierstrass approximation theorem: constructive proof that
polynomials are dense in C[0,1].

Theorem: Let f be a continuous function on the interval [0,1]. Then the Bernstein
polynomial B, (f)(z) given by

AUCES WIE NG

converges uniformly to f(x) on the interval [0, 1].

lim B, (f)(z) = f(z) | convergence is uniform

n—oo
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Example: Function approximation using

Bernstein polynomials

Let f(z) =22 —1|Vx

Key observations:

Bernstein basis polynomials have global support.

Bernstein polynomials are not interpolatory, but still converge because of linear consistency.

1.2

Bernstein approximation

0 0.2 0.4 0.6 0.8

Approximation involves product of functional and basis.

Can we generalize to any GBC? (yes!)



41 Example: Function approximation using

moving-least-squares basis

1.2

f(2) = 22— 1|Vz '

0.8

fn =Y fleg)ox(x)

dx(x) are MLS basis functions
with local support

Observations:
« Approximation still converges uniformly.

« Convergence is faster with local support.

moving-least-squares
approximation with local
support




s 1 Function approximation using GBCs on
general domains

Theorem:

Let f be a continuous function on the domain . Suppose {dx(x), K =
1,...,N} forms a partition of unity and each function ¢x has local support of
size h. Then the GBC approximation fj(x) given by

fu(x) = f(xK)¢x(x)

converges uniformly to f(x) on €.

Lim fu(z) = f(x)| convergence is uniform
—0




16

GBC application to quadrature

Will be used in applications to PDE solution.
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Application to quadrature

Since lim fx(x) = f(z) uniformly, it follows that /th(X)dQ—>/Qf(X)dQ

h—0

with |/fh ) dS) — /f dQ| /]fh ’dQ</€dQ:V'€

Can obtain rates of convergence using Taylor’s theorem.



s | Quadrature

fu(x) ==Y f(xk)oK (%)

K

d§2
J

then / fux)d2 =3 Flx) / br (%)
" \
|

Define quadrature weight as WK=/¢K(X)dQ
Q

[ a0 =Y wics o) = [ £x)do

WK —

Q




w I Quadrature

— Q= Q= =
Note that EK:WK EKZ/Qm{(X)d /Q;qﬁK(x)d /Qld vV

Also, since ZXK i (x)=x
K

Now have a second-order integration scheme that can integrate linear functions exactly.

;WK:V ;WKXK:/QXCZQ

Can extend to higher-order integration using higher-order reproducing conditions.



© ! Quadrature example in 1D

For Bernstein approximation: Let f(z) = |22z —1|Vx

Bernstein
(global support)

recall B, (x) = gf (%) bin(x)

1 1 102}
bi,n(z)dx = = W; MLS (local
0 error support)

Llf(x)dx%/()an(f)(x)dgg:nilizj;f(%) 03| Zh

~ midpoint rule

Of course, Gauss rules are much more efficient,
but are not generalizable to arbitrary domains.



# ! Quadrature example in 2D

O f(x,y) = sin(mz/2) sin(my)
1
2

error 1= ;WKf(XK) —/Qfdﬂ




GBC element-free basis functions
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Quadrature example

H =0.1 H =0.05

Evaluate error for 10 realizations.
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10-6 L

Quadrature convergence

C

error =

ubic

> wiel k) - /Q fd9

quartic

4.5

.

1

linear quadratic
2.1 °
— 2
1
0.65 0:1 0j2 0j4 0.(I)5 Oj1 0:2 0j4
H H

Note: seeing convergence rates greater than p + 1

0.05

0.1

0.2

H

0.4

0.05 0.1 0.2 0.4
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Conjugate (dual) basis

Will be used in applications to PDE solution.




71 Conjugate basis

Consider a set of linearly independent GBCs {®r} |

It will be useful in the formulation of both element-based and element-free
solutions of PDEs to project function gradients to this basis.

The projection can be written in terms of the conjugate (dual) basis {®”}

(®7,®”) =6/ bi-orthogonal |

Define G;; asthe Gram matrix for the basis | GrJ 3:/CI’I(I)J ds)
Q

Canshowthat &/ = G17®, and ®;=Gr,d' where G = (Gy)!



» 1 Conjugate basis example: Bernstein

conjugate functions

Bernstein polynomial b; ,(t)

1.2

1

0 0.2 0.4 0.6 0.8 1




» | Conjugate basis example: element free

basis vector @ dual basis vector @

(P, (I)J) = 51% bi-orthogonal

Note: ®x has local support, but ®* has global support
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Application to PDEs (solid mechanics)

Also applicable to formulations in H(div) and H(curl)?




s I Governing equations (total-Lagrangian formulation)

i
strong form  gp ) — [ -
a—X:I:pOfu, tO: O\\::
— Q% ‘-\\—>
u=u on Iy and P-N=t; on I} n O e x
r TR
P is first Piola-Kirchhoff stress tensor A
e
T
weak form  find the trial functions w € H'(Qg) such that
/ to-vdS — P: (0v/0X) dX = poth-vdX
1_‘6 Qo Qo

for all test functions v € HE (o)



* " Governing equations for linear elasticity |
strongform %:I—I—f:O u=u on I'y and on=t on I} ‘
|

o = Ce, where € := sym (Vu) (linear elastic)

Jag, o >0 suchthat age:e < e€:(C(x)e) < ay€e:€ Ve (uniform ellipticity)

weak form find the trial functions u € H'(Qg) such that |

/a:(@v/@x)dQ:/f-de—l—/ t-vdl
Q Q I Show bilinear form? |

for all test functions v € H}(Qp) a(u,v) :/ Vu : CVovdf
Qo
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Element-based discretizations (polyhedra)




=1 Harmonic shape functions

VZ¢r =0

A
-

—_—




» I Harmonic shape functions

VerBED

qu;(x) =1 partition of unity
I

ZXI ¢1(x) =x  linear reproducibility
I



Quadrature weights |

VielsBED

—L = —2 = =2 = 1= —2 =0.1 —2 =0.2
A 0.201 A 0.147 A 0.110 A 0.196 A 0.138 A 0.209 |

A = area

quadrature weights ZwK = A WK :/ OK (x) dS |

K e ‘
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Quadrature

error = ‘/f —Zwifi

1072

103 ¢

error

104 F

10°F

107

quadrature error

1

s

1072 107"

element size, h
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Conjugate functions

LRLBOD

(@7, ®7) =6/ bi-orthogonal



“" Consistency of discrete form (integration)

* For convergence of discrete approximation, need to ensure consistency of discrete and
continuous bilinear forms.

 Requires polynomial consistency of shape-function gradients (including quadrature).

* To obtain quadrature consistency, project the DoF shape function gradients to the
subspace of quadrature shape functions.

* Only performed once in a pre-processing step.

{¢r,1=1,...,N} DoF basis (shape functions)
{®d,K=1,...,M} Quadrature basis (shape functions)

v 2
<V¢I — Z aKCDK) dS} (L,projection)

K=1

Vor = argmin/

Q
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The projection can be written in terms of the dual or conjugate basis {®”}

(®g,®’) =06; bi-orthogonal

Vor=Y (Vor, @) =) (Vor, o)k
K K | |
\ J
Y |
covariant contravariant
components components

Can prove polynomial consistency up to the order of the precision of {®x}

Theorem: /quSIdQ:/pngIdQ forall p€Pr(Q)
Q Q

This ensures satisfaction
of the patch test.
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Replace the original bilinear form  a(u,v) = / Vu : CVvdQ
Q

symmetric (Bubnov-Galerkin).

with this modified bilinear form  a(u,v) = / Vu:CVodQ  Note: This modified bilinear form is st
Q

C

d(u,’v):/Q [Z(VU,(I)I)(I)I

I

J

a(u,v) = LZJ(VU,CI)I)C(VU,CI)J)/Qe
\

Z(V?}, (I)J)(I)J

ds

LD’ 40

)

|
GIJ
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Can show that G/ = (Grs)™*

where Gipj :/ ®;P;dQ isthe Gram matrix for the basis {®x}
Qe

Can showthat & =G!/®; and &; =G ;®’

a(u,v) = ZG”(Vu, ¢;)C(Vu, @) = Z(Vu, dF)C (Vu, dg)
1,J K

\ )
|

Looks like a sum over
quadrature points.
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Replace Gy with row-sum lumped version: Gf; =) Gy = diag{wk}
J

where recall WKZ/ch(X) ds2
Q

1 1
Then a(u,v) = a*(u,v) = Z E(VU, D) C(Vo,®x) where (GF,)™! = diag {E}
K
Can write @ (u,v) as | @"(u,v) = ZWK (Vu)g : C (Vo)
K
where | (Vu)x := b (V) B dO which has the form of a discrete derivative at a
WK Jo quadrature point K.

Our discrete bilinear form is now “sparse.”
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Verification: elasticity patch test

uniaxial tension

4—

4+—

4—

4—
4—

E=1.0

v=20.3

—

—>

—

—
—

hexagon mesh

subtriangle quadrature

— T

projection based quadrature

- e




% | Veritication: elasticity, hole-in-plate tension

von Mises stress invariant

uniaxial tension mapped hexagon mesh
-«— —
-«— —
«— —
— O .
-«— —
-«— —
«— —
* exact tension prescribed
corresponding to infinite plate

* plane strain
* quarter symmetry model used

E=1.0
v=20.3



7 ! Verification: elasticity,

L, norm

107

L, norm

E —O-- 1 pt per sub triangle
[ —O~ 3 pts per sub triangle
| —©— projection

—_

hole-in-plate tension

energy norm

10°

energy norm
>
\S]

10~

—EO-- 1 pt per sub triangle
—QC— 3 pts per sub triangle
—O— projection

1073

Optimal rates of convergence

h

10~
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Application example: hyperelastic, hole-in-plate

uniaxial extension

— — quad mesh

mapped hexagon mesh

4+— e < N N N N N N N W W W W W . |
“— —
«— —

* plane strain
* quarter symmetry model used

::::::

\\\\\

compressible neo-Hookean material

H T A
LT AN A
o =5l )+ ot

ox
=detF F=—
J e X
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600

500 1

400 r

load

300

200 1

100

load vs. extension

quad mesh
O poly mesh

50

100

extension

150




50 ‘ Application example: elastic-plastic, hole-in-plate

load vs. extension
25

quad mesh
O poly mesh

““““

..............

OO

20

15}
load
10}

0 5 10 15 20 25 30
extension

(Use F-bar methods for inf-sup stability.)



I Calculation of (Vor, ¢x)

e Currently solving for derivative projection using a sub-
triangulation and FEA.

« Can also use Green's identities to calculate these if shape
functions are harmonic.
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Element-free discretizations




53 ‘ Motivation: Separate domain discretization from
solution discretization

original domain

Q O O
O O
O O
O O
Oooo
O

defeature

O

defeature

Impact of domain defeaturing? depends on goals of simulation



=« | Motivation: Separate domain discretization from
solution discretization

« Domain defeaturing is needed to control FEA discretization quality, size, and critical
time step (explicit dynamics)

« Domain defeaturing typically requires human intervention (heuristics).

* For FEA, domain discretization and solution discretization are synonymous
(isoparametric).

« Geometric features can require a fine local discretization while solution does not.
* Heuristics are often used in domain defeaturing and mesh design.

* Meshes are typically designed with goal in mind, thus making it cumbersome to reuse.

« Adaptivity requires going back to domain model (geometry).



s 1 A hybrid element-free approach

finite-element approach

» defeature domain geometry based on goals
* create a mesh based on goals

* mesh discretizes domain and solution

* quadrature of weak form is easy

* visualization of results using mesh

» adaptivity of mesh is hard

mesh-free approach

* no defeaturing of domain geometry

« no discretization of domain

« connectivity of domain is undefined (need
computational geometry)

« quadrature of weak form is very hard

* visualization of results is cumbersome

Alternative hybrid approach: separate domain discretization and
solution approximation using an element-free formulation.



. | Hybrid approach: tfine-scale triangulation

V\%GIVWVW
R R

¢« Use a fine-scale triangulation
¢ to discretize domain.

Q O : ¢ o Define element-free basis

using this triangulation.

| é\
O O : @
\, NS

original domain




s | Element-free basis functions

« Element-free basis functions automatically
include geometric features at all scales.

* Solution discretization is separate from domain
discretization.

 No need to defeature domain.




| Hybrid element-free approach

* no defeaturing of domain

 discretize domain using fine-scale triangulation (a mesh, but poor quality is okay)
» use hp-cloud to define solution discretization (GBC, RK)

» use second hp-cloud to define quadrature and ensure coercivity

» projection of solution gradient to obtain polynomial consistency

* visualization of results using fine-scale mesh

pros

. : cons
« symmetric, Galerkin , , L :
e linear or nonlinear * constant material properties within a domain
« implicit or explicit dynamics * material interfaces: have to use weak

« can do higher order enforcement such as mortar method

« can do direct or mixed formulation * lesssparse
« adaptivity is seamless

* can use poor quality tet mesh

« adaptivity is facilitated

* should work for H(div) and H(curl) spaces

* reduced order modeling through coarse discretizations
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Hybrid element-tree approach

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, VOL. 37, 229-256 (1994)

ELEMENT-FREE GALERKIN METHODS

T. BELYTSCHKO, Y. Y. LU AND L. GU

Department of Civil Engineering, Robert R. McCormick School of Engineering and Applied Science,
The Technological Institute, Northwestern University, Evanston 11 60208-3109, U.S.A.

domain influence

Figure 1. Cell structure for quadrature in EFGM and domains of quadrature point
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Moving Least Squares (Reproducing Kernel)

The MLS shape functions ¢;(X)are defined as a
spatial modulation of the nodal weight functions.

01(X) = cr(X)wr(X)

where the modulation function ¢;(X) is found through a
least square minimization process resulting in

cr(X) = g' (X)A™' (X)g(X))

where

AX)=) wi(X)g(X;)g! (X;)  (sum over neighbors)
kel

g'(X)={1X, X} (linearreproducibility)

Note: shape function construction is algebraic.

nodal weight function

1.2

. wi(X)

0.8

> 06}

04 r

02 r

-1 -0.5 0 0.5 1

7

circular or rectangular support



« | Moving Least Squares

1.5

0.2

0.4

0.6

0.8

15

05

-0.5

Y ox(x) =1
ZSUK oK (z) ==

K

0.2

0.4

0.6

0.8

1.5

05

-0.5

0.2 0.4 0.6 0.8
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diffraction and transparency

D. Organ, M. Fleming, T. Terry, T. Belytschko

Computational Mechanics 18 (1996) 225-235 -C' Springer-Verlag 1996

Continuous meshless approximations for nonconvex bodies by

domain
with slot

visibility criterion

visibility criterion

Supporl for
node f

interior
hole in
domain

Suppert for node /

Crack \ ¢

b

Fig. 1a,b, Domains of influence near nonconvex boundaries using the
visibility criterion a Supporinear a hole, b Support near a crack tip

=
@jjﬁ

Crack \lnt\"'&

= .'_,.A

Fig, 2a-d, Contours for weight and shape functions associated with
node A constructed using the visibility criterion. a Weight

function near a crack tip, b Shape function near a crack tip, ¢ Weight
function near a hole, d Shape function near a hole




Computational Mechanics 18 (1996) 225-235 () Springer-Verlag 1996

Continuous meshless approximations for nonconvex bodies by
diffraction and transparency

D. Organ, M. Fleming, T. Terry, T. Belytschko

diffraction method transparancy method

All these methods (visibility,
transparency, diffraction) require
use of computational geometry.

Fig. 5a-d. Contours for weight and shape functions associated with Fig. 8a-d. Contours for weight and shape functions associated with
node A near a crack tip constructed using the diffraction method. node A near a crack tip constructed using the transparency
The quartic weight function in {2.18b) was used with d,,,, = 2.01 method. The quartic weight function in (2.18b) was used with

a Weight function for 2 = 1, b Shape function for 1 = 1, ¢ Weight d,,, = 2.01.a Weight function for x = 1.0, b Shape function for x = 1.0,
function for 2 = 2, d Shape function for 4 =2 ¢ Weight function for x = 0.5, d Shape function for x = 0.5
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Manifold geodesic

Geodesic: path that provides the shortest
distance along a manifold

(k<]

https://en.wikipedia.org/wiki/Geodesic

Euclidean manifold with boundary
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Geodesics in Heat: A New Approach to Computing Distance
Based on Heat Flow

KEENAN CRANE

Caltech

and

CLARISSE WEISCHEDEL and MAX WARDETZKY,
University of Géttingen

ACM Trans. Graph. 2013 Vol. 32 Issue 5 Pages Article 152

ALGORITHM 1: The Heat Method
I. Integrate the heat flow u = Au for some fixed time .

II. Evaluate the vector field X = —Vu/|Vu|.
III. Solve the Poisson equation A¢ =V - X.

r
Py p’

Ry e
N

X ¢

Fig. 5. Outline of the heat method. (I) Heat u is allowed to diffuse for a
brief period of time (left). (II) The temperature gradient Vu (center left) is
normalized and negated to get a unit vector field X (center right) pointing
along geodesics. (II) A function ¢ whose gradient follows X recovers the
final distance (right).

Fig.1. Geodesic distance from a single point on a surface. The heat method
allows distance to be rapidly updated for new source points or curves.



z ‘ Weight functions using heat f|
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67 ‘ Weight functions using heat flow

=
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"Point” placement

 uniform on boundary
« random close packing on interior (maximal
Poisson sampling)

packing size:

H =0.1
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Weight function support size

support size

encloses underlying tri mesh

packing size: H = 0.1

CD: .. .
R=2H —"

linear

R=3H
quadratic

[ R:4H

cubic






n I Element-free approach to solve BVPs

Use two meshfree clouds: one for solution discretization (DoF) and

one for quadrature.

O DoF node
e quadrature nodes

.o quad-to-dof ratio = 42

0}
(,o: .
()

What ratio of quad nodes to dof nodes is needed for stability
(coercivity of bilinear form)?



= I Patch test (linear consistency)

uniaxial tension

- —_—
E=1.0

- D
v =20.3

-— —_—

error > 5%



? ' Consistency of discrete form (integration)

* For convergence of discrete approximation, need to ensure consistency of discrete and
continuous bilinear forms.

 Requires polynomial consistency of shape-function gradients (including quadrature).

* To obtain quadrature consistency, project the DoF shape function gradients to the
subspace of quadrature shape functions.

* Only performed once in a pre-processing step.

{¢r,1=1,...,N} DoF basis (shape functions)
{®d,K=1,...,M} Quadrature basis (shape functions)

v 2
<V¢I — Z aKCDK) dS} (L,projection)

K=1

Vor = argmin/

Q



# ! Patch test (linear consistency)

pure shear

uniaxial tension

no projection

with projection

error < 1013



» 1 Example: plate with hole

uniaxial tension

«— —
-«— —
-«— —
+— O — >
-«— —
-«— —
«— —
vr=20.3

* plane strain
* quarter symmetry



s I Example: plate with hole

10}

103 F

L, norm

no

correction .~
-~
-~

wo & o0

-
-~

8
¥
-

19 -~
-

with
correction

0.1 0.2 0.3 0.4

0.5

10"t

energy
norm

energy norm

no
correction

with

correction

0.1 0.2 0.3

0.4

0.5



Example




dof nodes

basis functions

stress field (vm)
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Nearly incompressible limit

« Can extend approach to handle nearly incompressible materials

* Use a “generalized” B-Bar/F-bar approach.

* Project dilatational portion of deformation gradient to smaller subspace, e.g. use

original DOF points as quadrature basis.

¢
¢
C

O DoF node and dilatational quadrature node
e deviatoric quadrature node
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Summary

1. Showed applications of GBCs to both element-based and element-free PDE
discretizations

2. GBCs enable formulation of a diverse set of polyhedral discretizations.

3. GBCs enable element-free discretization on complex disconnected domains
without resource to computational geometry.

4. Element-free weight function used manifold geodesic (heat map)

5. GBCs also induce quadrature schemes for both element-based and element-free
methods.

6. GBCs facilitate gradient projection schemes for PDE consistency.

7. Applications to multiresolution (wavelet) on complex shapes?



