
Managing Randomness to Enable Reproducible Machine
Learning

Hana Ahmed
Sandia National Laboratories
Albuquerque, New Mexico

hahmed@sandia.gov

Jay Lofstead
Sandia National Laboratories
Albuquerque, New Mexico

gflofst@sandia.gov

ABSTRACT
The National Information Standards Organization defines scientific
reproducibility as “obtaining consistent results using the same in-
put data, computational steps, methods, and code, and conditions
of analysis” [12]. Reproducibility in machine learning (ML) refers
to the ability to regenerate an ML model precisely guaranteeing
identical accuracy and transparency. While a model may offer re-
producible inference, reproducing the model itself is frequently
problematic at best due to the presence of pseudo-random numbers
as part of the model generation. One way to ensure that models are
trustworthy is by managing the random numbers produced during
model training. This paper establishes examples of the impact of
randomness in model generation and offers a preliminary investi-
gation into how random number generation can be controlled to
make ML models more reproducible.
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1 BACKGROUND
Machine learning methods are applied to a wide range of fields
and modern problems. ML has been pivotal to advancements in
fields such as health care [4, 5], material sciences [7], economics [1],
radiology [8], civil engineering [19], and sales and marketing [23].
ML algorithms have been used to solve recommendation systems
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[6, 21], image recognition [11], email spam detection [24], machine
translation [14], desktop assistance1, and sentiment analysis [9, 17].

In ML, as in most scientific fields, experimental reproducibility
is a benchmark for verifying scientific findings. The majority of sci-
entists will fail to reproduce findings of a prior study [2], informing
what is considered a “reproducibility crisis” across scientific fields.
Many scientific findings are in fact the results of repeated retrial
and retesting until the desired results are achieved, without empha-
sizing that the results are actually extremely rare and unlikely to
obtain by running the same experiment [13].

However, the reproducibility of random number sequences in
ML models is often overlooked. Randomness is a tool used in ML to
train more robust and accurate models. What is randomized during
the training process (i.e., training data, input features, and initial
weights) will vary across ML algorithms. Random numbers are gen-
erated in sequences by pseudo-random number generators (PRNGs).
When different number sequences are produced, the resulting ML
model will also be different. Thus, being able to reproduce an ML
model’s random number sequence is critical to its reproducibility—
and therefore its scientific trustworthiness.

In recent decades, computer scientists have regenerated pseudo-
random number sequences by recording the PRNG seed (the starting
value of a pseudo-random number sequence). Sen et al. [22] use a
“capture-and-replay” method to replay data races using the same
PRNG seed. Frederickson et al. [10] uses a similar approach to
reproduce Monte Carlo trees.

This paper explores the variance in model performance that re-
sults from different sequences of random numbers being produced
in the training process. In this study, random number generation
is controlled by regulating the pseudo-random number generator
seed to ensure the same generation process is used each time. We
designed C++ intercepts to std::rand() and std::srand() and
store any seed used either deliberately by the caller or generated by
the intercept. By using this approach, simply adding a new include
file line and linking in the replacement code can alter the random
number generation and add reproducibility features without having
to modify the ML algorithm source itself. This minimally invasive
approach we think is key for widespread adoption of reproducibil-
ity for ML algorithms and demonstrate the effectiveness of this
approach. This intercept was used in a series of experiments with
various ML algorithms to explore the relationship between random
number generation and model accuracy on public, commonly used
data sets.

Randomness in neural networks and the importance has been
investigated by Scardapane, et. al [20]. The impacts of training data,
specifically over-sampling and under-sampling methods, on model

1http://www.ai.sri.com/project/CALO
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quality are observed by Batista et. al [3]. This motivates our study
into the results of varying randomness and training/testing data in
the development of ML models.

Zhang et. al [25] investigate why deep neural network (DNN)
models successfully generalize and avoid overfitting to training data.
This seems to avoid the need to address randomness for DNNs. Con-
versely, Raghunathan et. al [18] find that training with adversarial
examples can deter generalization in neural networks. While each
of these works discuss the impact of randomness indirectly, they
do not address the root problem randomness introduces into the
studies making general conclusions difficult to trust. In short, DNNs
may be less affected, but only if the training data is friendly enough.
This is impossible to predict for a very large data set, such as those
frequently used for DNNs.

Due to the black box nature of ML models, it is difficult to deter-
mine how randomized aspects such as training data, input features,
and initial weights influence the final predictive quality. Our un-
derstanding as both programmers and users of how a prediction
was made and how a model might interact with real data becomes
limited. This creates a need for advanced interpretability techniques
to deconstruct the black box, as addressed by Krause, et. al [15]. To
properly test varying these parameters, the randomness inherent
in the underlying algorithms must also be addressed or it is not a
fair comparison as our results demonstrate. Our paper reveals that
controlling generated random number sequences is a necessary
step to reproducing a given ML model.

2 DESIGN
The software design for these studies is to intercept calls to the built-
in PRNG and offer both a better replacement as well as recording
the crucial seed that enables re-creating the model exactly by a
completely different research group.

The C++ Standard Library possesses multiple PRNGs. The orig-
inal holdover from C, std::rand() and std::srand() remain.
std::rand() is considered to be an inefficient PRNG, as it is a
slower algorithm, has a limited range of [0, 32767]2, uses a linear
congruential engine (a comparatively low quality approach with a
short period)3,4, and produces non-uniform results. Alternatively,
the C++11 <random> library contains better quality PRNGs.

We developed replacement code which, when included in a C++
build, intercepts any given call to std::rand() or std::srand().
The former calls an mt19937 generator (a Mersenne twister [16]).
The latter records the seed for replay. The algorithms are illustrated
in Algorithms 1 and 2. When std::srand() is not called, a random
seed is generated using a time() function. Then, by intercepting
std::srand() at its call, we are able to store the seed, which deter-
mines the sequence of numbers that will be output by the generator,
for later reference. This simple approach is sufficient to intercept
and store the start of the pseudo-random number sequence en-
abling replay. More advanced techniques, such as recording all of
the numbers generated from a hardware random number generator,
are straightforward extensions of this approach.

We validated our approach by considering four use cases:
2https://www.cplusplus.com/reference/cstdlib/rand/
3https://www.cplusplus.com/reference/random/linear_congruential_engine/
4https://channel9.msdn.com/Events/GoingNative/2013/rand-Considered-

Harmful

(1) std::srand() has been called to set a seed for the first time
in the program.

(2) std::srand() has been called to set a seed after it has al-
ready been called by a previous application run.

(3) std::srand() has not been called to set a seed, and std::rand()
has been called for the first time.

(4) std::srand() has not been called to set a seed, and std::rand()
has already been called at least once before.

The basic idea is to generate a seed if none is provided, but to
always record the seed if none was saved previously. On subsequent
runs, rather than generating a new seed (or using a provided one if
the code is attempting to provide a new seed each run), the value
from the previous run is read and used. This ensures the pseudo-
random number sequence will be identical for subsequent runs as
we are controlling both the PRNG algorithm and the seed value.

Algorithm 1 srand
Let 𝑠𝑒𝑒𝑑 be an integer
Let 𝑠𝑒𝑒𝑑𝐹𝑖𝑙𝑒 be a file
if 𝑠𝑒𝑒𝑑𝐹𝑖𝑙𝑒 is empty or !exists then

Create a file named 𝑠𝑒𝑒𝑑𝐹𝑖𝑙𝑒
𝑠𝑒𝑒𝑑𝐹𝑖𝑙𝑒 ← 𝑠𝑒𝑒𝑑

else
𝑠𝑒𝑒𝑑 ← value in 𝑠𝑒𝑒𝑑𝐹𝑖𝑙𝑒

end if
Seed a PRNG with 𝑠𝑒𝑒𝑑

Algorithm 2 rand

if Algorithm 1 has not been run then
Let 𝑛𝑒𝑤𝑆𝑒𝑒𝑑 be an integer
𝑛𝑒𝑤𝑆𝑒𝑒𝑑 ← current time
Run Algorithm 1 where 𝑠𝑒𝑒𝑑 = 𝑛𝑒𝑤𝑆𝑒𝑒𝑑

end if
Generate an integer using the seeded PRNG

One challenge is present when trying to use a mt13997 generator
behind the std::rand() interface. For the former, the generated
number is an unsigned 32-bit integer. For the latter, it is a signed
32-bit integer. To avoid dealing with negative numbers as they are
completely unexpected in any code using std::rand(), we right bit
shift by 1 the mt13997 generated number to shift it back into scope.
We also redefine the RAND_MAX accordingly enabling algorithms that
attempt to proportion data based on the function and the maximum
value to continue to work properly. Ideally, the full range would be
used, but that is not an option when replacing the implementation
of std::rand(). While 32-bit precision is preferred, the period of
13997 values does not require the entire range.

All intercept code, machine learning algorithms, intercept code
tests, and experimental data will later be published on Github upon
paper acceptance.

3 EXPERIMENTS
Our experiments are conducted on an Intel®CoreTM i7-8665U CPU
@ 1.90GHz 2.11GHz, with 32 GB RAM. The operating system is
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Figure 1: Varying the random seed and randomizing train/test data at a 30/70 split, the performances of 100 Neural Networks
(NN) models on Heart Disease and Wine data sets, 100 K-Means clustering models on Iris and Breast Tissue, and 100 Naive
Bayes models on Wisconsin Breast Cancer and Somerville Happiness.

Windows 10 and uses the C++ Clang Compiler for Windows (11.0.0)
and C++ Clang-cl for v142 build tools (x64/x86). The mt13997 pa-
rameters are the C++11 standard values. Further experimentation
using different numerical distributions is left for future work.

For each experiment, we train and test up to 100 models on each
two different data sets for each of three algorithms for a total of
six sets. The selected algorithms are neural network (NN), k-means
(knnn) clustering, and naive Bayes (nB) classifier models. The six
different data sets are from the UCI Machine Learning Repository
and their associated algorithm are as follows: Heart Disease (NN),
Wine (NN), Iris (knnn), Breast Tissue (knnn), Wisconsin Breast
Cancer (nB), and Somerville Happiness (nB).

In these experiments, we focus on controlling or varying each
model’s 1) random seed, 2) train/test ratio, 3) training data set,
and 4) testing data set. From the 16 possible permutations of these
four variables, this paper covers experiments with eight of the
permutations. We did not pursue the four permutations where both
the seed and train/test ratio are fixed, as this combination would
guarantee that the exact model is reproduced each time, making the
experiments fruitless. Similarly, we did not pursue the other four
permutations where both the seed and train/test ratio are varied, as
this would guarantee the generation of completely different models
each time, again producing no novel results or insights.

3.1 Experiment 1
In this experiment, we use time() as the random seed for each
model, fix the train/test ratio at 30/70, and randomize the data
before splitting into training and testing sets. We generate 100
models on each of the two data sets for each algorithm making for
600 models total. Results are in Figure 1 and Table 1.

First we examine the neural network models. On the Heart Dis-
ease data set, the neural networks perform from 0.3783 to 0.8237
accuracy (a 44.53% range). On the Wine data set, accuracy ranges
from 0.1958 to 0.6475 (a 45.17% difference between the worst and
best models). Seeing that the random number seeds were varied
throughout this experiment, and no model generated had equal

performance, these results demonstrate a significant impact of gen-
erated random numbers on an ML model’s ultimate quality and
performance.

Next, the k-means clustering models. On the Iris data set, the
k-means models perform within a range of 0.5980 accuracy to
0.6868 accuracy (a 8.883% range). On the Breast Tissue data set,
performance ranges from 0.1216 to 0.4078 accuracy (a 28.62% range).

The naive Bayes classifiers performwith accuracies ranging from
0.6326 to 0.689 on Wisconsin Breast Cancer (a 5.6423% range) and
from 0.4466 to 0.6195 on Somerville Happiness (a 17.29% range).

3.2 Experiment 2
In this next experiment, we vary the random seed by outputting
time() for each model, fixed the train/test ratio at 30/70, random-
ized the train data set, and fix the test data set. This means that for
each algorithm/data set pair, the data set is shuffled before being
assigned to training data. The models are then tested on the same,
arbitrary test data taken from the unshuffled data set. We generate
100 models on each of the two data sets for each algorithm, making
for 600 models total. Results for this experiment can be seen in
Figure 2, with an additional summary in Table 2.

The neural network models on the Heart Disease data set range
from 0.4873 to 0.8196 accuracy (a 33.23% difference). On the Wine
data set, however, the accuracy is consistent at 0.329609.

K-means clustering models perform within 0.4646 and 0.6868
accuracy (a 22.22% range in model quality). We see a much wider
variation of k-means models produced on the Breast Tissue data
set, performing between 0.1973 and 0.4605 accuracy (a 26.31% dif-
ference).

Lastly, the naive Bayes algorithm produced 100 identical mod-
els for the Wisconsin Breast Cancer data set which perform at
0.65762 accuracy, and another 100 identical models for Somerville
Happiness which perform at 0.6196 accuracy.

3.3 Experiment 3
In this experiment, we fix the random seed, vary the train/test ratio,
vary the training data set, and fix the test data set. This means that



Table 1: Model accuracy results from varying the random seed and randomizing train/test data at a 30/70 split for each model, a
summary of the final performances for 100 neural networks on Heart Disease and Wine data sets, 100 k-means models on Iris
and Breast Tissue, and 100 naive Bayes models on Wisconsin Breast Cancer and Somerville Happiness.

Data set Size Train/test Min Max Mean Median
Heart disease (NN) 303 30/70 0.3784 0.8238 0.6411 0.6367
Wine (NN) 178 30/70 0.1958 0.6475 0.3039 0.2948
Iris (K-means) 150 30/70 0.598 0.6869 0.6472 0.6455
Breast tissue (K-means) 106 30/70 0.1216 0.4079 0.2765 0.2857
Wisconsin Breast Cancer (Naive Bayes) 699 30/70 0.6327 0.6891 0.6543 0.6535
Somerville Happiness (Naive Bayes) 143 30/70 0.4466 0.6196 0.5397 0.536

Figure 2: Varying the random seed, controlling the train/test ratio at 30/70, varying the train data set, and controlling the
test data set. The figure below shows the performances of 100 Neural Networks (NN) models on Heart Disease and Wine data
sets, 100 K-Means clustering models on Iris and Breast Tissue, and 100 Naive Bayes models on Wisconsin Breast Cancer and
Somerville Happiness.

Table 2: Model accuracy results from fixing the test data set for each algorithm/data set pair, the performance of 100 neural
network models on Heart Disease and Wine, 100 k-means models on Iris and Breast Tissue, and 100 naive Bayes models on
Wisconsin Breast Cancer and Somerville Happiness.

Data set Size Train/Test Min Max Mean Median
Heart Disease (NN) 303 30/70 0.4873 0.8197 0.7089 0.7544
Wine (NN) 178 30/70 0.3296 0.3296 0.3296 0.3296
Iris (K-Means) 150 30/70 0.4646 0.6869 0.6819 0.6869
Breast Tissue (K-Means) 106 30/70 0.1974 0.4605 0.3389 0.3421
Wisconsin Breast Cancer (Naive Bayes) 699 30/70 0.6576 0.6576 0.6576 0.6576
Somerville Happiness (Naive Bayes) 143 30/70 0.6196 0.6196 0.6196 0.6196

for each algorithm/data set pair, we use the same random seed to
produce a randomized test data set. The models are then tested on
the same, arbitrary test data taken from the unshuffled data set.
We generate 10 models for each algorithm, with train/test ratios at
10/90, 20/80, 30/70, 40/60, 50/50, 60/40, 70/30, 80/20, and 90/10. A
summary of the results for this experiment can be seen in Table 3.

We see a variety of results in the performances of each algorithm
and the models they generate. Starting with the neural network
algorithm, the worst neural network on Heart Disease performs
with an accuracy of 0.487329 at the train/test ratios 10/90, 20/80,
40/60, 50/50, and 90/10. The best neural network performs with
0.8372 accuracy at 80/20 (a 34.99% difference). On the Wine dataset,

the worst neural network performs with an accuracy of 0 at a
10/90 and 20/80 train/test ratio, whereas the best neural network
performs with 0.8333 accuracy at all other train/test ratios (an
83.33% difference).

Moving on to k-means clustering, the worst model performs on
the Iris data set with an accuracy of 0 at a 90/10 train/test ratio,
whereas the best k-means model performs with an accuracy of 1 at
70/30 and 80/20 (a 100% difference). On the Breast Tissue data set,
the worst k-means model performs with 0.0566 accuracy at a 50/50
train/test ratio, and the best k-means model performs with 0.5454
accuracy at 90/10 (a 48.88% difference).



Figure 3: Controlling the random seed, varying the train/test ratio, varying the train data set, and controlling the test data set.
The figure below shows the performances of 10 Neural Networks (NN) models on Heart Disease and Wine data sets, 10 K-Means
clustering models on Iris and Breast Tissue, and 10 Naive Bayes models on Wisconsin Breast Cancer and Somerville Happiness.

Table 3: Fixing the random seed, varying the train/test ratio, varying the train data set, and fixing the test data set for each
algorithm/data set pair. The performance of 10 neural network models each on Heart Disease and Wine, 10 k-means models
each on Iris and Breast Tissue, and 10 naive Bayes models each on Wisconsin Breast Cancer and Somerville Happiness.

Train/Test Heart Disease
(NN) Wine (NN) Iris

(K-Means)
Breast Tissue
(K-Means)

Wisconsin Breast Cancer
(Naive Bayes)

Somerville Happiness
(Naive Bayes)

10/90 0.4873 0 0.6296 0.2737 0.6455 0.5703
20/80 0.4873 0 0.5833 0.3095 0.6279 0.5701
30/70 0.7476 0.3296 0.523 0.4324 0.6155 0.56
40/60 0.4873 0.3296 0.5556 0.4127 0.5776 0.5294
50/50 0.4873 0.3296 0.6667 0.0566 0.5673 0.5211
60/40 0.5663 0.3296 0.8333 0.3571 0.5878 0.5263
70/30 0.5205 0.3296 1.0 0.4688 0.5789 0.5
80/20 0.8372 0.3296 1.0 0.3810 0.5971 0.4286
90/10 0.4873 0.3296 0 0.5455 0.7101 0.5

Lastly, from the naive Bayes algorithm, the worst naive Bayes
model performs on Wisconsin Breast Cancer with an accuracy
of 0.5673 at a 50/50 train/test ratio, whereas the best naive Bayes
model performs with 0.7101 accuracy at 90/10 (a 14.28% difference).
On Somerville Happiness, the worst naive Bayes model performs
with 0.5 accuracy at 70/30 and 90/10 train/test ratios, whereas the
best naive Bayes model performs with 0.5703 accuracy at 20/80 (a
7.0312% difference).

4 DISCUSSION
Our remaining six experiments lead to the same conclusions: de-
pending on the algorithm type and other factors such as train/test
split and data sets, randomness has the potential to cause inconsis-
tent and non-reproducible results. We also observe that in experi-
ments where data is randomly assigned to training and testing sets,
algorithms produce overall better performing (i.e., higher accuracy)
models, suggesting a trade-off between model quality and repro-
ducibility. The outcomes of ML models are clearly dependant upon
the random numbers generated during training. Our findings show
that the performance of a given ML model will vary significantly
due to changes in the random number seed. Controlling the random

numbers generated during training will regulate this variance in
outcomes and ensure the reproducibility of ML models.

5 CONCLUSIONS AND FUTUREWORKS
The outcomes of a machine learning model are clearly dependant
upon the random numbers generated during training. We have
shown that the performance of a given machine learning model
will vary significantly due to changes in the random number seed.

In this study, we examined the relationship between random
number seed and model accuracy using common machine learn-
ing algorithms: neural networks, k-means clustering, and naive
Bayes classification. Our findings show that, depending on the type
of algorithm and other factors such as train/test split and data
set, randomness has the potential to cause inconsistent and non-
reproducible results. Controlling the random numbers generated
during the training process will regulate this variance in outcomes
and ensure the reproducibility of ML models.

We leave addressing other types of ML algorithms, parallel algo-
rithms, and GPU support for future work as this paper is intended
to offer a foundation to motivate extensive additional work.
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