
Institute for Defense Analyses
4850 Mark Center Drive  Alexandria, Virginia 22311-1882

Algorithmic Input Generation for
More Effective Software Testing

Laura Epifanovskaya, Jinseo R. Lee, Christopher McCormack, Reginald Meeson
Institute for Defense Analyses

Robert C. Armstrong, Jackson R. Mayo
Sandia National Laboratories

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology
& Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the

U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

SAND2022-7085CThis paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in
the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Institute for Defense Analyses
4850 Mark Center Drive  Alexandria, Virginia 22311-1882

I. Introduction

2

The Fourth Industrial Revolution is here:
Software powers everything, and software is hard to test

Image: https://www.forbes.com/sites/bernardmarr/2016/04/05/why-everyone-must-get-ready-for-4th-industrial-revolution/?sh=59423e423f90

Institute for Defense Analyses
4850 Mark Center Drive  Alexandria, Virginia 22311-1882

II. Background

4

Coverage metrics are required but insufficient criteria for testing software

• Modified condition/decision coverage (MC/DC) is required by the
standard used in commercial aviation

• Not all variable values are tested
• Masking can undermine the utility of coverage metrics

A B C

T T T

F T F

T F F

F F F
Condition !(A > 10)
is masked if !B

5

Ideas from fuzzing suggest ways of sampling a program’s input space

• Fuzzing (automated randomized testing) helps find
unexpected behaviors

• Rather than purely random inputs, state-of-the-art
fuzzing prioritizes “corner cases” and perturbations to
normal inputs

• We seek to build on fuzzing practice and target tests to
uncover bugs more effectively, by characterizing the
input space mathematically

Institute for Defense Analyses
4850 Mark Center Drive  Alexandria, Virginia 22311-1882

III. Experiment

7

A small C module of the Traffic Collision Avoidance System (TCAS) used in
commercial aviation with 12-variable input and single output

TABLE 1. TCAS VARIABLE VALUES

TCAS Variable Equivalence Bin Values

Cur_Vertical_Sep 299, 300, 601

High_Confidence TRUE, FALSE

Two_of_Three_Reports_Valid TRUE, FALSE

Own_Tracked_Alt 1, 2

Own_Tracked_Alt_Rate 600, 601

Other_Tracked_Alt 1, 2

Alt_Layer_Value 0, 1, 2, 3

Up_Separation 0, 399, 400, 499, 500, 639,
640, 739, 740, 840

Down_Separation 0, 399, 400, 499, 500, 639,
640, 739, 740, 840

Other_RAC
NO_INTENT,
DO_NOT_CLIMB,
DO_NOT_DESCEND

Other_Capability TCAS_TA, OTHER

Climb_Inhibit TRUE, FALSE

This approach replicates work done
at the U.S. National Institute of
Standards and Technology (NIST)
by Richard Kuhn and Vadim Okun‡

28 “buggy” TCAS modules were
generated through mutation of the
code (changing conditional
operators or internal variable values,
for example)

8

Test inputs were generated using covering arrays, which guarantee t-way
variable interactions in a given array

TABLE 2. T-WAY COVERING ARRAY TEST
SETS

Array Strength Number of Tests
2-way 100
3-way 400
4-way 1215
5-way 3607
6-way 11018

*Cohen, David M., Siddhartha R. Dalal, Michael Freedman, Gardner C. Patton, The AETG System: An Approach to
Testing Based on Combinatorial Design. IEEE Transactions on Software Engineering, 1997.

Example*:

Nine tests required to include all
t=2-way interactions

Full-factorial requires 34=81 tests

Institute for Defense Analyses
4850 Mark Center Drive  Alexandria, Virginia 22311-1882

IV. Results

10

Tests generated using covering arrays caught all but one of the program
bugs at high t-way interaction levels (t=5, t=6)

TABLE 4. COVERING ARRAY TEST RESULTS

t (strength) t=2 t=3 t=4 t=5 t=6

Test Size 100 400 1215 3607 11018

Bugs Caught 4 16 21 27 27

Test Failures 103 257 1292 3892 11663

Total Tests 2800 11200 34020 100996 308504

% Efficiency 3.7 2.3 3.8 3.9 3.8

TABLE 1. RANDOM TEST RESULTS

t (strength) t=2 t=3 t=4 t=5 t=6

Test Size 100 400 1215 3607 11018

Bugs Caught 4 19 23 26 26

Test Failures 78 351 1035 2957 8878

Total Tests 2800 11200 34020 100996 308504

% Efficiency 2.7 3.1 3.0 2.9 2.9

But random test
sets of the same
size also did well!

11

Covering arrays do slightly better than random testing with large test sets,
but are no better than random at low t-way interactions

The power of covering arrays
comes from the forced specification
of low-probability interaction sets

A specific six-way combination has
a 78% chance of appearing in a
random draw

The chance is 100% that it will
appear in a t=6-way covering array

12

One fault was never triggered by the covering arrays or random test sets
because the binned values did not provide sufficient resolution

TABLE 1. TCAS VARIABLE VALUES

TCAS Variable Equivalence Bin Values

Cur_Vertical_Sep 299, 300, 601

High_Confidence TRUE, FALSE

Two_of_Three_Reports_Valid TRUE, FALSE

Own_Tracked_Alt 1, 2

Own_Tracked_Alt_Rate 600, 601

Other_Tracked_Alt 1, 2

Alt_Layer_Value 0, 1, 2, 3

Up_Separation 0, 399, 400, 499, 500, 639,
640, 739, 740, 840

Down_Separation 0, 399, 400, 499, 500, 639,
640, 739, 740, 840

Other_RAC
NO_INTENT,
DO_NOT_CLIMB,
DO_NOT_DESCEND

Other_Capability TCAS_TA, OTHER

Climb_Inhibit TRUE, FALSE

An internal variable is set to True if
Cur_Vertical_Sep = 600 in the
correct program

In the faulty program, the logic
incorrectly sets the variable to True
if Cur_Vertical_Sep = 500

The equivalence binning does not
provide resolution to catch the
mistake

13

The problem was overcome by creating covering arrays of randomly select
values from the bins (Random from equivalence Bin Covering Array, RBCA)

TABLE 6. RBCA TEST RESULTS

t (strength) t=2 t=3 t=4 t=5 t=6

Test Size 37 144 476 1334 3837

Bugs Caught 1 13 21.7 23 28

Test Failures 34 154 505 1420 4135

Total Tests 1036 4032 13328 37352 107436

% Efficiency 3.3 3.8 3.8 3.8 3.8

14

A complexity approach used a single input as a seed, then created a test set
based on a specified “Hamming distance” from that seed

TABLE 7. HAMMING TEST RESULTS

 Tier 1 Tier 2 Tier 3

Input Seed Used Bugs Caught Bugs Caught Bugs Caught

UPWARD_RA 13 17 22

UPWARD_RA
Tier 1 Output 15 19 22

DOWNWARD_R
A 17 22 27
DOWNWARD_R
A
Tier 1 Output

19 23 27

DOWNWARD_R
A
Tier 1 Output

17 23 27

299 0 0 2 600 2 0 500 499 0 1 0

299 1 0 2 600 2 0 500 499 0 1 0
299 0 0 2 600 2 0 500 740 0 1 0
299 0 0 0 600 2 0 500 499 0 1 0

Seed input:

Inputs of Hamming distance 1:

15

The Hamming test sets were more efficient than the others, but also used the
equivalence bin values, making one fault unreachable

Institute for Defense Analyses
4850 Mark Center Drive  Alexandria, Virginia 22311-1882

V. Conclusion

17

Algorithm-directed fuzzing (Hamming) was the most efficient technique

• If we discard the equivalence bin values and move to a
continuum of values, we expect it to catch the faults in
all programs

• Our ongoing work is tailoring the fuzzing algorithm and
implementing it as a real-time fuzzing tool

