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M A new interferometric diagnostic successfully revealed electron-density
time histories of laboratory photoionized plasma for the first time

* Time and spatially resolved measurements of electron density are a critical plasma diagnostic

* Photon Doppler velocimetry has been successfully implemented in close proximity to the x-ray flux
produced by Z N

e Dual PDV probes were used to assess plasma uniformity
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* We can refine our understandlng of the experiment by combmmg
Nogastil 1 laser and x-ray diagnostics
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N We are using the Z-machine to investigate laboratory produced
photoionized plasmas

* Photoionized plasmas are ubiquitous throughout space.
e Ex: Active galactic nuclei, x-ray binary systems, and planetary nebulae

* Untested astrophysical models require high quality lab data'?
* Observations from orbiting telescopes Chandra and XMM Newton

* Analyzed with codes, e.g. Cloudy & XStar, developed mainly on a
best-theory effort

Credits: NASA/CXC &J. Vaughan ~ =~ = %

* Laboratory produced photoionized plasmas relevant to astrophysics
require high intensity broadband x-ray flux.

* This requirement has usually relegated laboratory photoionizedfplasma
work to large scale facilities developed for inertial confinement fusion
experiments3’

* The Bhotoionized gas cell platform on the Z-machine allows investigation

of laboratory produced photoionized plasmas -
Credit: NASA/ESA/STScI
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IN[ Gas cell platform on Z
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N We can control ionization parameters by adjusting gas cell position
and fill pressure

lonization Parameter?2 Gas Cell
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N We can control ionization parameters by adjusting gas cell position
and fill pressure
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N We can control ionization parameters by adjusting gas cell position
and fill pressure

lonization Parameter?2 Gas Cell ' Pressure sensor
P 41 erg - cm ~ 2x2x1 [cm] Density up to shot time
5 = n [ s ] Neon, Argon, H

e
A measure of the relative
importance of photoionization
and collisional ionization

Astrophysically relevant

E>»1

* Observes neon K-shell absorption spectra
* Photon energy range: 860-1230 eV
* Extract charge state distribution and
electron temperature
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N

Simulations predict a central region of quasi hydro-unperturbed
photoionized neon plasma
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N

Simulations predict a central region of quasi hydro-unperturbed
photoionized neon plasma
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Current diagnostics are unable to test this prediction
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N Photon Doppler velocimetry enables measurement of electron
density inside the gas cell

* From the time rate of change in optical path length, the time rate of change in
the refractive index of a plasma can be inferred.!

d d xf 1.000
_AOPL(t) — = — n(x, t)dx
dt dt Xo 0.998
* The index of refraction of the plasma is 0.99
dependent on the electron density. -
0.994
Nne (8/1)27’13 0,992 b —— A =1550 nm |
n(ne) — == — = > | — A=1310nm
NC Me&p (ZTL'C) —— A =1064 nm
\ N D000 L —— A =532nm 1

L1 I 1
10]? 1018 1019
ne [cm™3]

1) D. Dolan et al. JAP, 123, 034502, (2018)
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IN[ Plasma uniformity can be assessed with two PDV probes

1. Assess the uniformity of the photoionized plasma in the gas cell via two PDV probes

2. Measure the electron density of the photoionized plasma within the gas cell




N Fiber optic placement is a key consideration in extreme radiation
environments

e 1-2 MJ of x-rays and ~ 200 TW of x-ray power
* Gas cell placement ~ 6 cm from the z-pinch
* Opposite effect of plasma detection with PDV

=
=
=
=

2. Gas cell footprint constrained by the
anode B-dots
* 90° dual fiber optic mirror assemblies were
developed

* Reduce exposed surface area of fibers
* Avoid interference with anode hardware




N Challenge: Fiber optics are susceptible to extreme radiation
environments

* lonizing radiation can contaminate the
fiber signal

e Radiation shielding is crucial for the
implementation of PDV in close
proximity to the pinch radiation

1. K.J.Swanson et al. RSI, 93.4, 043502, (2022)
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N Adverse radiation effects were crucial to mitigate and
characterize

e Uni-directional PDV were located
on both sides of the cell
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Radiation effects induced in the fiberoptics were characterized
N using PDV noi b
g noise probes

* Bi-directional PDV probes with mirrors
on the end were included on the right
and left side of the gas cell
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IN[ First direct observation of the early ionization radiation phase

e Lasts ~50 ns prior to the
main x-ray pulse

* Lower energy radiation

* Driven by radiation from z-pinch

produced by the run-in phase

Gas Cell

Front plasma probe

alliror / (Uni-directional) :
/S .

‘ I ~4mm m

AT '
Left Rad. Noise Back plasma probe |
I

\4

probe ; (Uni-directional)

(Bi-directional) |

A\ |(— ——————— 20mMmM = = = = = = = )l

=
=
T

_fi: PDV Cell [GHz]

: NN W
(9]} [ 1 (]
1 1 1 1

—
=
I

S
)]
T

| | | | =
ro = = = =
[ a1 [ (]

PDV Rad. Noise [GHz]

|
Mo
&)

| Right Rad. Noise

probe
¢ (Bi-directional)

1 L ! i
—50 —40 -30 -20 -10

t [ns]

S

19



IN[ First direct observation of the early ionization radiation phase

e Lasts ~50 ns prior to the
main x-ray pulse

* Lower energy radiation
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IN[ First direct observation of the early ionization radiation phase
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IN[ First direct observation of the early ionization radiation phase
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IN[ First direct observation of the early ionization radiation phase
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Differences in x-ray flux can be seen in the ionization rates between
INT separate shots and between the front and back portion of the gas cell

T T 1 T T 1 : 100.00%
Shot Avg. Comparison :
/3600 & 23607
- < 10.00%
Z1.00
3
= y
~ [Neon gas fill g
2 41.00% =
— | 15 Torr ] E
g _Far position =
:
]
e 0.10%
10T 73600 ; 0 x2.5
73607 ; 0x2.5
Avg: 73600 Z3607 ; o x2.5
Percent Difference: Z3600 Z3607 ; 0 x2.5
1 1 1 1 1 | 0.01%

3060 3070 3080 3090 3100 3110 3120
t [ns]



Differences in x-ray flux can be seen in the ionization rates between
INT separate shots and between the front and back portion of the gas cell
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N Comparison of radiation hydrodynamic simulations driven with two
different levels of x-ray flux compare well with experiment
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N Comparison of radiation hydrodynamic simulations driven with two
different levels of x-ray flux compare well with experiment

- —— . - ' -7 100.00%
Slmulatlon Comparlson Il \
Impinging X-ray flux at the Front vs Rear |/ |
1.0 f=
C , ‘
- , |
: | \
3 I |
201F . ] 1
S Neon gas fill , ! :
) | I g
5 15 Torr I I -10.00% 5
Soor  Far position \ ' :
2 \ I &
= \ I
2 Vo
g \ /
M 0.0 g \ /
u -r
- Front Sim ; 0 ¢2.5
Rear Sim ; 0x2.5
Avg: Front Sim & Rear Sim ; 0x2.5
0.0 g Percent Diff.: Front Sim & Rear Sim ; 0x2.5
' N 1 1 1 1.00 %
3020 3040 3060 3080 3100 3120

t [ns]



N Comparison of radiation hydrodynamic simulations driven with two
different levels of x-ray flux compare well with experiment
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N

Comparison of radiation hydrodynamic simulations driven with two
different levels of x-ray flux compare well with experiment
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IN[ Effect of early burst of radiation is captured by PDV diagnostic
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N Time resolved electron density measurements are made possible with
chordal interferometry
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N Time resolved electron density measurements are made possible with
chordal interferometry
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Ni Time resolved electron density measurements are made possible with
chordal interferometry
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* Front probe observes rise in electron
. /3600 & Z360
density before the back probe sl Neom15Tom

 Nominally identical experiments
show reasonable agreement

We can refine our understanding of experiments by combining laser and x-ray diagnostics

As well we can test the accuracy of simulated electron density time histories
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M A new interferometric diagnostic successfully revealed electron-density
time histories of laboratory photoionized plasma for the first time

* Time and spatially resolved measurements of electron density time are a critical plasma diagnostic

* Photon Doppler velocimetry has been successfully implemented in close proximity to the x-ray flux
produced by Z — e ==

Dual PDV probes were used to assess plasma uniformity
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