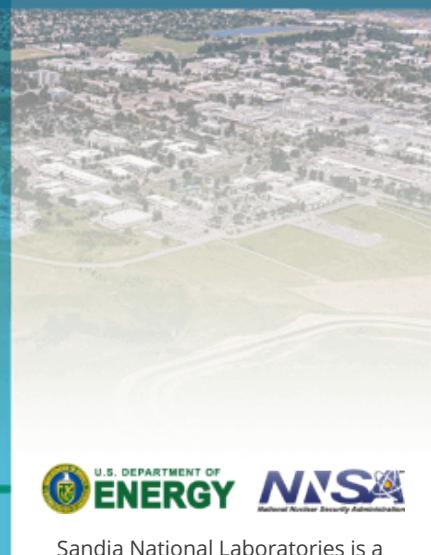
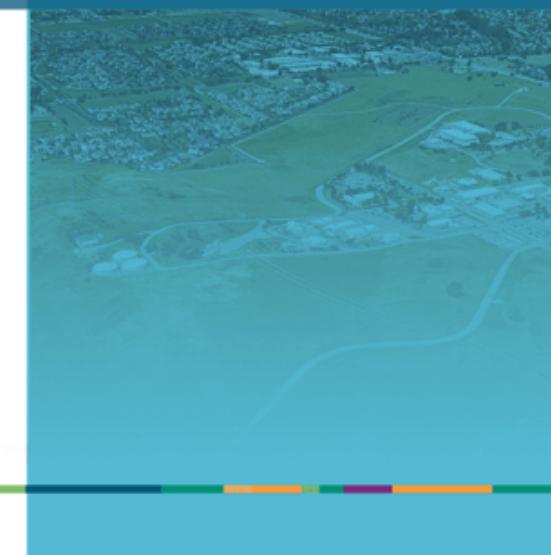


Sandia
National
Laboratories

Supporting Hydra at SNL

Gary Lawson

Kristian Beckwith



Todd Heer

May 24th

2022 Tri-lab Advanced Simulation & Computing
Sustainable Scientific Software Conference

Albuquerque, NM, USA

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Introduction – What is ASC DevOps Core @ Sandia?

Product Owner:

- Scott Warnock

Scrum Master:

- Etone Mbome

Development Team:

- Jon Grzybowski
- Gary Lawson
- Chris Sullivan
- Paul Wolfenbarger

What do we do?

Code Scan

Code Vulnerability
Scanning Tool

Common
Development
Environment

Consistent
Multi-platform
Software Stack

Dockerized Services

Jenkins
CDash

General Support

Hydra
Vislt

Hydra Support – what's the ask?

1684 Manager:

- Kristian Beckwith

Hydra Project Lead:

- Marty Marinak

Hydra Developer:

- Joseph Koning

ASC DevOps Core Developer:

- Gary Lawson

Support Request:

- Provide a software stack to support Hydra with Spack
 - Intel Compiler
 - MVAPICH2 MPI
 - General and LLNL-specific Third-Party Libraries (TPL's)
- Create and perform tests to verify/validate stack
- Deploy stack to metagroup-controlled project space
 - Optional Lmod module
 - Spack view
- Automate the end-to-end pipeline
 - LLNL to SNL Gitlab Repository Synchronization
 - Hydra TPL Stack Build, Test, & Deployment

Why should anyone care about this effort?

Sandia National Labs analyzes scenarios involving high energy density physics

Hydra is used for simulating high energy density physics problems

- Magnetic Fields
- Burn Products
- Radiation transfer
- Atomic physics
- Hydrodynamics
- Laser propagation

Providing this software for analysts at SNL helps both SNL and LLNL

- Expands expertise on the software
- Allows for collaborating for development and analysis efforts
- Enables coupling to SNL codes for multi-physics simulations

Because Hydra helps analysts to understand a scenario with more confidence

What is the issue?

SNL Programs desire to collaborate with LLNL to use Hydra on ASC HPC resources for analysis and development

Hydra requires a software stack that is not otherwise supported by SNL

- Stack utilizes several LLNL software packages that are only available if provided by LLNL
- Stack utilizes an implementation of MPI that is not fully supported on SNL HPC platforms
- Stack must be validated and verified without access to Hydra source code

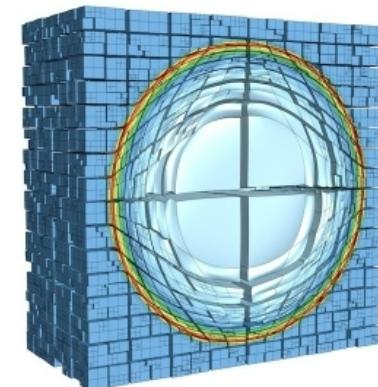
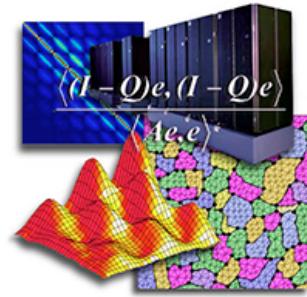
There is difficulty in enabling remote analysis and develop of SNL programs in cross-site HPC resource environments

- Approval and access control may be required
- Understanding the usage of the HPC environment is required to run efficient simulations

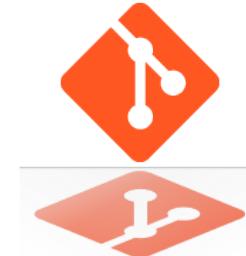
Challenges with providing the Software Stack

1. Providing and verifying MPI on SNL HPC computational resources

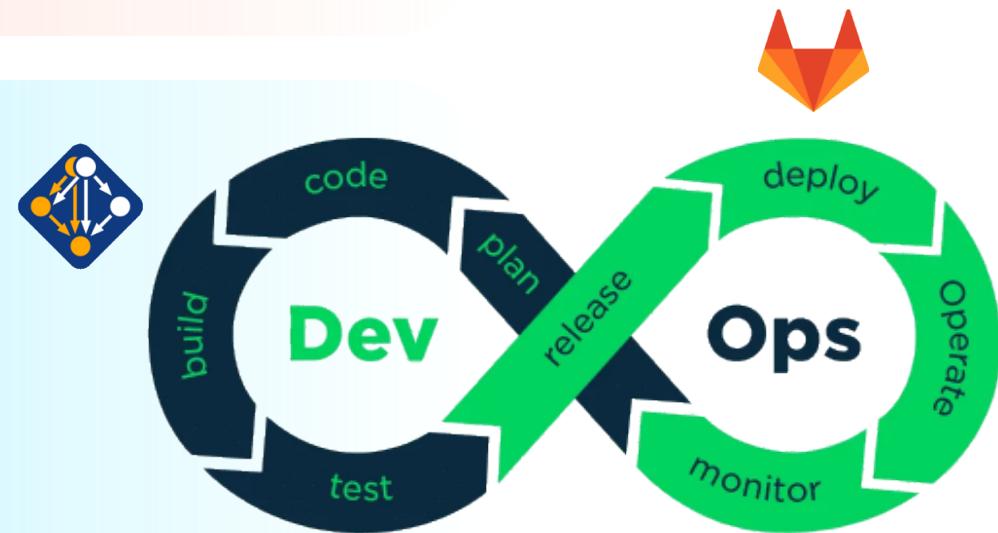
- OpenMPI
 - Supported by SNL admins on all HPC clusters
 - Used by the Hydra team, but **found to introduce bugs at runtime**
- MVAPICH2
 - Exists on certain HPC clusters, but not supported by SNL admins
 - Built with Spack and **verified against system installation for correctness**
 - MiniAMR benchmark selected from Developer Tools Confidence Suite
 - Several problems tested for consistency between builds
 - Built and maintained in the TPL stack for Hydra



MVAPICH

Challenges with providing the Software Stack


2. Verifying TPL stack for Hydra

- Picked two representative packages in stack
 - Hypre – Scalable linear solver and multigrid methods
 - MFEM – Lightweight & scalable library for finite element methods
- Verified with E4S validation test suite
 - Utilize the same stack as Hydra is to be built upon
 - Ensure important features are available and run correctly
 - Rule out features that may fail but have no impact on the final software product


Hydra Workflow

1. Synchronize SNL ihpccluster Gitlab with LLNL RZ Gitlab
 - Hydra Spack Package.py repository

2. Synchronize TPL software & versions
 - Local Spack mirror
 - Spack environment files

3. Build for CTS1 and TLCC2 class platforms
 - SNL specific configurations
 - Impacts MPI and packages requiring MPI

4. Test software deployment
 - MVAPICH2
 - Hypre/MFEM

E4S

Limitations & Challenges

Synchronization is manual

- Requires two-factor authentication to synchronize repositories
- Requires email collaboration to synchronize software stack

Python Support

- Not all Python modules are available in Spack
- Utilizing Miniconda installation to manage Python and modules

E4S Validation Tests require tweaks

- Intel Math Kernel Library (MKL) added to makefile for Hypre build
- SNL HPC systems utilize Slurm and the srun command

Tri-Lab Remote Computing Enablement (RCE) Program

RCE is integral to simplifying three HPC centers for a single NNSA userbase

RCE – Auth

Leverage tri-lab trust models for fewer auth hops

RCE - CI

Cross-site CI for leveraging remote compute resources

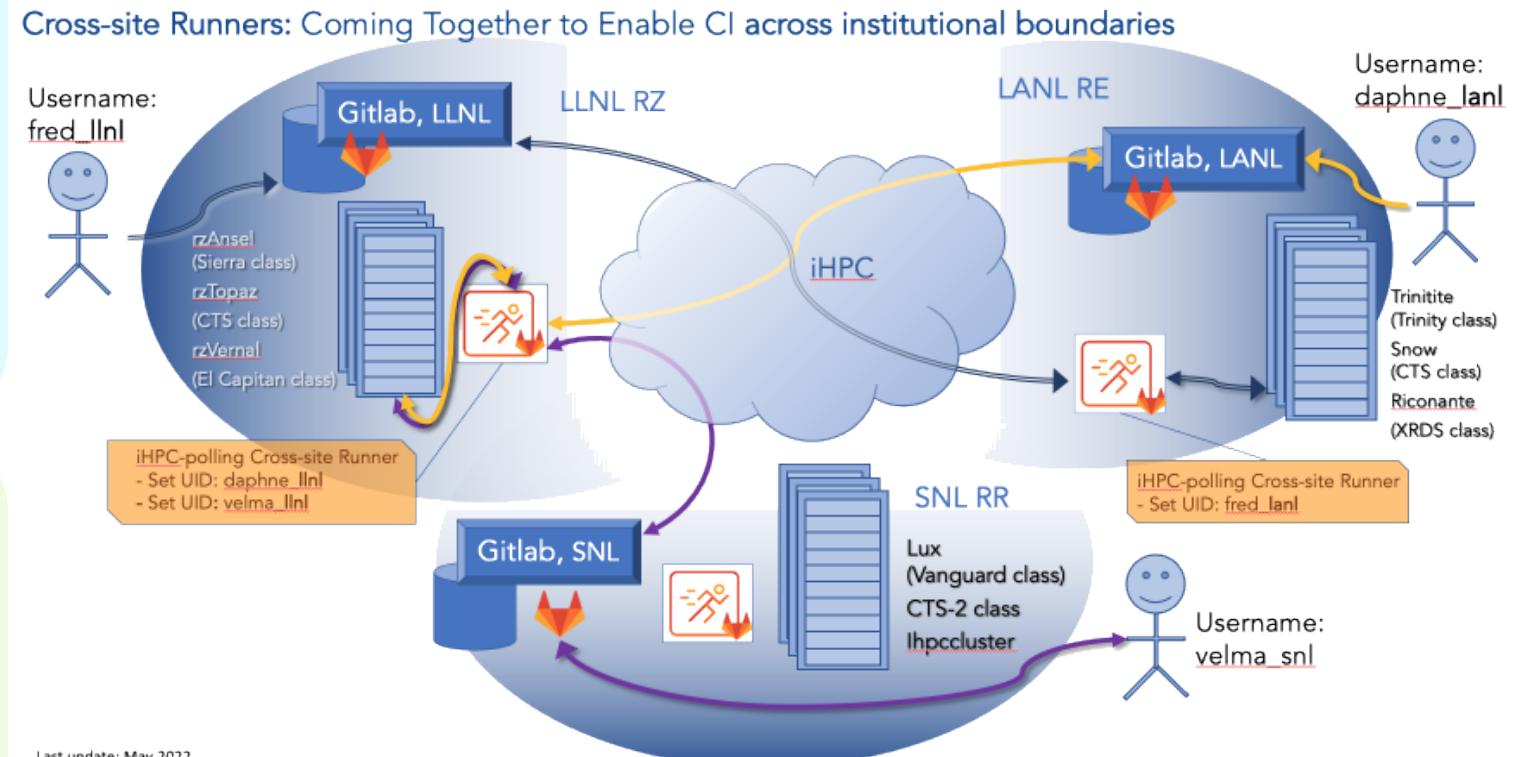
RCE – network

Improved bandwidth networks between sites

RCE - storage

Data transfer systems and process equity among the tri-labs

Cross-site Automation & Execution


RCE enables improved utilization of tri-lab HPC resources while maintaining system security and integrity

Trusted Authentication

- Synchronizing Gitlab repositories
- Cross-site CI & execution

Jacamar Runners

- User-level CI for improved security
- Automated build & test locally or cross-site

Conclusion - What is the impact of this effort?

Sandia National Labs analyzes scenarios involving high energy density physics

Providing Hydra for analysts at SNL helps both SNL and LLNL

- Reliable and consistent development and runtime environment
- Cross-site collaboration between LLNL & SNL
- Automated synchronization, build, test, and deployment

Hydra helps analysts to understand a scenario with more confidence

Points-of-Contact

Kris Beckwith

kbeckwi@sandia.gov

Scott Warnock

sawarno@sandia.gov

Gary Lawson

glawson@sandia.gov

Todd Heer

heer2@llnl.gov