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Computing Status Report2

More powerful supercomputers are inevitable, but is our 
scientific usage of this technology keeping up?



Resources are limited, which is your best choice?
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MD Approximations Change Over Time3 http://lammps.sandia.gov

https://github.com/materialsvirtuallab/mlearn

https://github.com/materialsvirtuallab/mlearn


Solid Mechanics,
 Hydrodynamics

Kinetic Monte Carlo, 
Phase Field

Interatomic Potentials as Multi-Scaling4

• IAP can be useful without 
being physically motivated

• Preserving accuracy 
through scales while 
becoming computationally 
efficient

• Need to be cautious of what 
is promised with machine 
learning, most of MD will be 
extrapolation
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Classical, Empirical Potentials

5

Machine Learned Potentials

Machine Learning to Bridge Electronic-Atomic

• Metals, Inorganic, Organic, etc.
o Assume energy and forces are 
some function of local atomic 
neighborhood descriptors

• Needs reference data to be properly 
trained to get the ‘right’ energies and 
forces



Environment of Machine Learning Techniques6

Physically 
Motivated

Data-
Science 
Motivated

Non-Linear 
Optimization Kernel Methods Convolutional

Neural Networks
Structured

Neural Networks

SNAP GAPAGNI HIP-NN SchNet Deep-MDBLAST-ML

• Adoption of machine learning techniques within molecular dynamics has been varied 



Components of ML-MD7
https://github.com/FitSNAP/FitSNAP 

http://lammps.sandia.gov

• Python backend 
= 

Bring your own model

• Accuracy, 
Transferability

• Representation, 
Sampling, 
Complexity…

• Performance Portable 
Kernels

https://github.com/FitSNAP/FitSNAP


Environment of Machine Learning Techniques8
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Empirical Pots. Machine Learned Pots.

Descriptors Training Technique

• Linear Regression
• Stochastic Gradient Descent
• Gaussian Process Regression
…

• Bond distances, angles [Behler]
• Moment tensors [Shapeev]
• Bispectrum components [Cysani, 
Thompson]

• Smooth overlap of atomic positions 
[Cysani]

• Atomic cluster expansion [Drautz]
…



Accuracy Demands9

• S.P. Ong (UCSD) and group members 
generated ‘standardized’ training data for Cu, 
Ni, Mo, Li, Si, Ge

• Comparing ML-IAP implemented in 
LAMMPS, cost assessed on CPU only

• https://github.com/materialsvirtuallab/mlearn

Training Data Sets for Material Science

Zuo et. al. J. Phys. Chem. A (2020), 124, 4, 
731–745

Mo

ACE
Increasing 
body order SNAP
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https://github.com/materialsvirtuallab/mlearn


Efficiency Demands10

• Uses SNAP ML-IAP for high pressure 
Carbon

• Team from USF, Sandia, NERSC, NVIDIA, 
KTH : doi.org/10.1145/3458817.3487400

2021 Gordon Bell Finalist

• Neural Network based ML-IAP for Water, 
Cu

• Team from Princeton, Berkeley, LBNL, 
IAPCM(Beijing), Peking Univ.: 
doi.org/10.1016/j.cpc.2020.107624

2020 Gordon Bell Winner

*Both heavily rely on 
GPU parallelization!

*Both interface with 
and run in LAMMPS!

https://doi.org/10.1145/3458817.3487400
https://doi.org/10.1016/j.cpc.2020.107624


ML-IAP in LAMMPS
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• Native LAMMPS
 ML-SNAP
• LAMMPS Interfaces
 ML-HDNNP: Singraber, N2P2, Behler-
Parrinello Descriptors, ANN Potentials

 ML-QUIP: Bartok, Csanyi, GAP Potentials, 
SOAP Descriptors

 ML-PACE: Lysogorskiy, Drautz, Atomic 
Cluster Expansion

 ML-RANN: Dickel, NN potential with fast 
fingerprints

 KIM: Tadmor, many ML potentials: DUNN, 
hNN, PANNA

 USER-DEEPMD: Zhang, E, Car, Deep 
Network Potentials 

 USER-MLIP: Shapeev, Moment Tensor 
Potentials

 USER-MLIP: Seko, Machine Learning 
Potential Repository

 USER-PINN: Mishin, Physically informed 
neural network potential

 USER-ANI: Barros, Smith, Lubbers, ANI 
ANN Potentials

 USER-AENET: Artrith, Behler-Parrinello 
Descriptors, ANN Potentials

:
:



SNAP Applications
12
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Al

2014

Year

2015

2017

2018

2018

2019

2020

2020

2021

Dislocation motion

Usage

Radiation damage, defects

Plasma facing materials

Shock, phase transitions

Phase diagram prediction

Super-Ionic Conductor

Accuracy/Cost comparison

Radiation damage, defects

Predicting electron density

31

NDoF

31

56

56

31

31

10-130

241

91

363

NTraining

665

25,052

20,000

2,000

3,000

1,000

1,000

30

Linear

Descriptors

Linear

Linear

Quadratic

Linear

Lin+Charge

Lin, Quad

EME

NN

SNL, Thompson

Origin

SNL, Thompson

SNL, Wood

SNL/LLNL

UCSD, Ong

UCSD, Ong

UCSD/SNL

SNL, Cusentino

SNL, Ellis

Mo 2017 Phase diagram prediction 31 1000 LinearUCSD, Ong

Fe 2021 Magnetic phase transition 1596 683 Quad+SpinSNL, Nikolov

AlNbTi 2020 High entropy alloy design 1596 7,250 QuadraticSNL, Tranchida

Si 2020 Neural network SNAP 1596 >5,000 NNUNLV, Zhu

SNL Involved, Independent



SNAP Applications
13
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Plasma facing materials

Usage

Planetary impacts, shock

Metal plasmas

56*

NDoF

1596

1596

>40,000

NTraining

30,000

10,000

Linear

Descriptors

Quadratic

Quadratic

SNL, Cusentino

Origin

USF, Willman

SNL, Wood

MoNbTaT
i

- HEA alloy design - >5,000 EMESNL, McCarthy

GeSe - Vitrification - >5,000 EMEUCD, Sievers

W - Model form selection - 330,000 NNLANL/SNL

LiMoS - Li-ion batteries - >5,000 -UConn, Dongarre

SiGeSnP
b

- Thermoelectric materials - >5,000 -GWU, Li

So what should you train a ML-IAP on? How do you recognize failures (poor extrapolations)?

(more in the literature, not an exhaustive list)

• Growing evidence that SNAP is a general use material model form, unlike 
any interatomic potential used in MD to date

• SNAP model training software now incorporated in Materials Design Inc. 
products

SNL Involved, Independent

WZrC - Plasma facing materials 56* >40,000 LinearSNL, Sikorski

https://www.materialsdesign.com/


Accelerating Model Development14

• Software tools needed to realize the 
accuracy-cost tradeoff continuum

• Python interface for user ease of use 
Object oriented framework for developer 
ease of use

FitSNAP.py Breakdown

*Auto conversion from VASP OUTCAR coming soon!

• ML-IAP can be ‘overlapped’ with other physical 
models (coulombic, magnetic spins, ion core 
repulsion)

• Training data storage as dictionaries:



Descriptors15

• Calculator class calls LAMMPS to convert 
atomic coordinates into descriptors.

• Thread parallel implementation via Mpi4Py 
and LAMMPS python library interface.

LAMMPS Breakdown

Musil et. al. Chem. Rev. (2021) 121, 
9759−9815 



Regression16

• D is a N*M matrix
N Scales with number of training points
M Scales with the descriptor expansion
N>>M, can exceed local memory

Simple Model Form

T : DFT 
training

D : Set of 
descriptors

w : 
Weight
s

*Coupling to AutoDiff and Pytorch available!



Parallelization17

• Cython backend to Solver class allow for 
distributed memory regression → QR 
Decomposition via ScaLAPACK

• Each nodes’ object handles its own set of 
training Data → ML-IAP fitting only limited 
by resource availability

Timing Breakdown

• Points are increasing descriptor basis, 
Quadratic results in order of magnitude 
larger M sizes

     N*M matrix exceeds the 128Gb of local 
shared memory, only possible with a distributed 
solver.

• Gradient descent solvers are implemented, 
but are slow and add hyperparameters to fits



Neural Network Models18

• Non-linear, descriptor-based models of 
atomic energy are simple to train, much 
more complicated for forces
i : central atom index
j : neighboring atom index
k : descriptor id

More Memory Needed

Generate simple configs 
modeled by harmonic 

potential

Fit forces using PyTorch or JaxCheck if working : 

Same procedure/architecture 
as more realistic examples!

Example : 
https://github.com/rohskopf/SimpleML-IAP



Software Development19 https://github.com/FitSNAP/FitSNAP 

• pip install fitsnap
or

git clone https://…

• Open issues, request features, and 
discuss with developers/users via 
GitHub

• Example cases roughly 
follow our publications;

Fe: SNAP + Magnetic Spin
InP: Explicit Multi-Element 
Descriptors
Ta_PACE: Atomic Cluster 
Expansion Model
Etc.

https://github.com/FitSNAP/FitSNAP


Magnetic Materials Simulations20

• Electronic structure or Spin-Lattice 
simulations have been the only options 
for many decades.

• Former lacks scalability, latter lacks 
any real dynamic or finite temperature 
effects

Chemical, Functional Complexity



Magnetic Materials Simulations21

SNAP
Expt.

Nikolov et. al. npj Comp.Mat.

"Data-driven magneto-elastic predictions 
with scalable classical spin-lattice 

dynamics." , NPJ

• Transformational capability to study 
magnetic materials at the grain scale

• Explicit treatment of spin dynamics 
captures the second order phase 
transition at Curie temperature

Fe; Everyone’s Favorite
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Spin Cond.
Phonon Cond.

Nikolov et. al. J. Mat. Sci.

Magnetic Materials Simulations

Finite Temperature Magnetism

• Hot/cold regions are spaced 28.8 nm 
apart

• Thermal gradient established by 
setting hot region to Tmax = 1.08Tmin 
,Tmin : 300 - 1200K

• Magnon-phonon scattering 
significantly reduces 
conductivity

• Magnons more conductive 
than phonons where T < 
0.5TCurie



23 Alloy Design From MD

Alphabet Soup

• Enormous design space, how can 
interatomic potentials help?

• Chemical transferability is paramount!

Coury et al., Acta Mat. 175 (2019)

MoNbTaTi

Li et al., J. Mater. 
Res., Vol. 33, (2018)

Comprehensive DFT study of MoNbTaTi 
properties through composition space!
J. Startt et al., Materials Design 213 (2022)

 Training set to create machine learned 
interatomic potentials (MLIAPs)!



24 Alloy Design From MD

Beyond DFT

Property SNAP
2-element MLIAP

New DFT
(not in training)

|SNAP - DFT|

C11 (GPa) 239.6 237.6 0.8 %

C12 (GPa) 143.6 129.7 10.7 %

C44 (GPa) 39.5 37.8 4.5 %

B (GPa) 175.6 165.7 6.0 %

G (GPa) 42.7 43.6 2.1 %

E (GPa) 118.5 120.1 1.3 %

Untrained composition (vary 2 elements)

Mo18.1Nb23.6Ta23.6Ti34.7

Startt et al., Materials & Design. 213 (2022)
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Active learning (AL) and 
uncertainty quantification (UQ) 

modules in development!



25 Active Learning

Unknown Unknowns

• Training structures can come from a 
variety of sources.

• ML-IAP are fit w.r.t. descriptors, not our 
physical intuition of what matters

Bulk Interfaces Liquids

W Zr C

From expert opinion:

From sampling the descriptor space:

• But how to adapt to failures observed in MD?



26 Active Learning

USPEX : A. Oganov et al. / J. Chem. Phys. 124, 244704 (2006) 

Hands-on
Route:

Run MD

Carve out structures

Run DFT

Automated
(kind-of):

Structure 
prediction from 

DFT

Re-Train ML-IAP

Structure 
prediction from 

ML-IAP

Run DFT

…

…



Conclusions and Path Forward27

Contact Information:

mitwood@sandia.gov

• Data-driven interatomic 
potentials (SNAP, SNAP-
NN) allow for MD 
predictions of challenging 
material problems.

• While harder to quantify, 
the fidelity of our MD 
simulations needs to be a 
key consideration

• Thank you to all my collaborators: 
Aidan Thompson, Mary Alice 
Cusentino, Krupa Ramasesha, 
Svetoslav Nikolov, Charlie Sievers, 
David Montes do Oca Zapian, 
Danny Perez, Nick Lubbers, Julien 
Tranchida, Steve Plimpton, Ivan 
Oleynik, Jon Willman, Ember 
Sikorski, Megan McCarthy, James 
Goff, Drew Rohskopf, James 
Stewart, Carlos Pereyra, Nat Trask, 
Michael Sakano, and many others!

mailto:mitwood@sandia.gov


Exascale ML-MD28

 Novel mechanism of inelastic deformations observed for the 1st time – multiple cracks create multiple sound waves which 
interfere while propagating towards the elastic front

Transformative opportunity - direct atomic-scale insight by running simulations at experimental time and length scales

doi.org/10.1145/3458817.3487400

https://doi.org/10.1145/3458817.3487400

