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2 I Computing Status Report
More powerful supercomputers are inevitable, but is our
scientific usage of this technology keeping up?
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http://lammps.sandia.gov

3 I MD Approximations Change Over Time

Twobody (B.C.) Manybody (1980s) Advanced (90s- Big Data / Deep /
Lennard-Jones, Hard Stillinger-Weber, 2000s) Machine Learning
Sphere, Coulomb, Tersoff, Embedded REBO, BOP, COMB, (2010s)
~Bonded Atom Method ReaxFF GAP, SNAP, NN, ... [
f/:ire”éptéﬂgtnig (Tz%(?rgfson’ Resources are limited, which is your best choice? .
https://github.com/materialsvirtuallab/mlearn
eLJ A

- Qualitative Properties

Error w.r.t. DFT

Computational Cost


https://github.com/materialsvirtuallab/mlearn

4

Interatomic Potentials as Multi-Scaling
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|AP can be useful without |
being physically motivated |

Preserving accuracy ]
through scales while
becoming computationally
efficient

Need to be cautious of what
is promised with machine

learning, most of MD will be |
extrapolation I

Length ‘



5 I Machine Learning to Bridge Electronic-Atomic

Classical, Empirical Potentials Machine Learned Potentials
* Metals * Metals, Inorganic, Organic, etc.
o EAM: Assume spherical electron density o Assume energy and forces are
Ei = Fo(X2ip(rij)) + 322 Pap(rij) some function of local atomic

neighborhood descriptors
* Inorganic

o Stillinger-Weber: Assume 2,3-body * Needs reference data to be properly
harmonic springs trained to get the ‘right’ energies and
forces
* Organic

o0 ReaxFF: Assume covalent bonding,
smooth bond-orders between all
intcracting atoms




6 ‘ Environment of Machine Learning Techniques

. Non-Linear ~ Structured Convolutional
Physically Optimization fJj “¢™Me! Methods g\ ral Networks []Neural Network Data-
Motivated g L r---------eee e e e Science
II l ] ‘ ‘ tivated |
BLAST-ML SNAP AGNI GAP HIP-NN SchNet  Deep-MD I
* Adoption of machine learning techniques within molecular dynamics has been varied
_ Machine Learning Data DeePD-ki
Global: e.g., multi-start, Generator Data Train/Test
genetic algorithm DFT, AIMD, QMC, ... rawdata | &
et (s 3
Cwomerace | (2 5
:g.. simplex, h(:!:cl:llﬂ;?;l::“ :ﬂ @m,} ﬁ
Levenberg-Marquardt




https://github.com/FitSNAP/FitSNAP
http://lammps.sandia.gov

7 I Components of ML-MD

« Accuracy,
qnsferability

Training
Set |

* Representation,

Sampling,

H|¥) = E|¥) @

.........

* Python backend

\ | rﬂ\

Simulation™~) Local |
Engine

SaTaTa s,

Bring your own model

'« Performance Portable


https://github.com/FitSNAP/FitSNAP

s I Environment of Machine Learning Techniques

Descriptors Training Technique
 Bond distances, angles [Behler] * Linear Regression
« Moment tensors [ShapeeV] « Stochastic Gradient Descent
» Bispectrum components [Cysani, e (Gaussian Process Regression
Thompson]

« Smooth overlap of atomic positions “
[Cysani]

* Atomic cluster expansion [Drautz]

Data Needs:

*When Npor~Nrrqain, high risk of overfitting —
Poor Interpolation

*When training diversity is low — Poor Extrapolation

*RUNNING MD WILL EXPOSE THESE
SHORTCOMINGS

Model Form
Empirical Pots. Machine Learned Pots.



9 I Accuracy Demands

Training Data Sets for Material Science

 S.P. Ong (UCSD) and group members
generated ‘standardized’ training data for Cu,
Ni, Mo, Li, Si, Ge

» Comparing ML-IAP implemented in
LAMMPS, cost assessed on CPU only

* https://github.com/materialsvirtuallab/mlearn
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Zuo et. al. J. Phys. Chem. A (2020), 124, 4,
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https://github.com/materialsvirtuallab/mlearn

10 ‘ Efficiency Demands

2021 Gordon Bell Finalist 2020 Gordon Bell Winner

» Uses SNAP ML-IAP for high pressure * Neural Network based ML-IAP for Water,
Carbon Cu
« Team from USF, Sandia, NERSC, NVIDIA,  Team from Princeton, Berkeley, LBNL,
KTH : doi.org/10.1145/3458817.3487400 IAPCM(Beijing), Peking Univ.:
doi.org/10.1016/j.cpc.2020.107624
Performance 4650/1100165
i I A 2010'9 | :/ 90 |- DeePMD-kit —e | -
L ® t 1 = e ‘
oo N *Both heavily rely on 80 r e Scélmg | =
vg 6 . GPU parallelization! 70 ""':'"“PFLOPS?'
g | s, 60 _,,,,,,,,,,MD,stepgpersecond ,,,,,,,,,,
o4 - *Both interface with S 50
; | and run in LAMMPS! = 40
s, | 30 |
= 2 I ] |
= | 2 10.9
Ll Lol Ll L1 |:||||| 10 712.25 132'24 i ; i
1 10 100 1000 10000 7.08 14.16 2831 5662  113.25

nodes Number of atoms (in Millions)


https://doi.org/10.1145/3458817.3487400
https://doi.org/10.1016/j.cpc.2020.107624

| ML-IAP in LAMMPS

 Native LAMMPS
ML-SNAP
- LAMMPS Interfaces

ML-HDNNP: Singraber, N2P2, Behler-
Parrinello Descriptors, ANN Potentials

ML-QUIP: Bartok, Csanyi, GAP Potentials,
SOAP Descriptors

ML-PACE: Lysogorskiy, Drautz, Atomic
Cluster Expansion

ML-RANN: Dickel, NN potential with fast
fingerprints

KIM: Tadmor, many ML potentials: DUNN,
hNN, PANNA

USER-DEEPMD: Zhang, E, Car, Deep
Network Potentials

USER-MLIP: Shapeev, Moment Tensor
Potentials

USER-MLIP: Seko, Machine Learning
Potential Repository

USER-PINN: Mishin, Physically informed
neural network potential

USER-ANI: Barros, Smith, Lubbers, ANI
ANN Potentials

USER-AENET: Artrith, Behler-Parrinello
Descriptors, ANN Potentials



‘ SNAP Applications

SNL Involved, Independent

InP
WBeHe
Mo

Actinides

NiMo
LiN
Various
InP
AINbTi
Si

Al

Fe

2014

2015
2017

2017
2018
2018

2019
2020

2020
2020
2020
2021
2021

Dislocation motion
Radiation damage, defects
Plasma facing materials
Phase diagram prediction
Shock, phase transitions
Phase diagram prediction
Super-lonic Conductor

Accuracy/Cost comparison
Radiation damage, defects
High entropy alloy design
Neural network SNAP
Predicting electron density

Magnetic phase transition

SNL, Thompson 31
SNL, Thompson 31

SNL, Wood
UCSD, Ong
SNL/LLNL

UCSD, Ong
UCSD, Ong
UCSD/SNL

56
31
56
31

31
10-130

SNL, Cusentino 241
SNL, Tranchida 1596

UNLV, Zhu
SNL, Ellis
SNL, Nikolov

1596
91
1596

665
25,052

1000
20,000
2,000
3,000
1,000
1,000
7,250
>5,000
30

683

Linear

Linear

Linear

Linear
Quadratic
Linear
Lin+Charge
Lin, Quad
EME
Quadratic |

NN

NN
Quad+Spin



; ‘ SNAP Applications

WBeHN
WZrC

C

C,V
MoNbTaT
GeSe

LiMoS
SiGeSnP

6\/

So what should you train a ML-IAP on?

2022
2021

Plasma facing materials
Plasma facing materials

Planetary impacts, shock

Metal plasmas

HEA alloy design

Vitrification

Li-ion batteries

Thermoelectric materials

Model form selection

nradi~rte

SNL Involved, Independent

(more in the literature, not an exhaustive list)

SNL, Cusentino 56*

SNL, Sikorski
USF, Willman
SNL, Wood

SNL, McCarthy

UCD, Sievers

56*
1596
1596

UConn, Dongarre -

GWU, Li
LANL/SNL

>40,000
>40,000
30,000
10,000
>5,000
>5,000
>5,000
>5,000
330,000

Linear '

Linear
Quadratic I
Quadratic I
EME

EME |
NN ]

How do you recognize failures (poor extrapolati

Growing evidence that SNAP is a general use material model form, unlike
any interatomic potential used in MD to date

SNAP model training software now incorporated in Materials Design Inc.



https://www.materialsdesign.com/

14 I Accelerating Model Development

. - Try mpi4py, Else Stubbs Read Input File
FitSNAP. Py Breakdown @ E Init Package and Libraries Checks ]

accuracy-cost tradeoff continuum
Object oriented framework for developer

« Python interface for user ease of use

ease of use asok =) Scrape o> Scrape — Scrape
extended xyz Dlvvy up configs (P.) Node paral]ehsm for

Store atom positions, single or multiple fits
ground truth values

Calculator
Call LAMMPS (P.)
Collect Descriptors

* ML-IAP can be ‘overlapped’ with other physical
models (coulombic, magnetic spins, ion core
repuIS|on)

Store fitted
coeffiecients, Solver
970215, 0.0, 0.0],[ 0.0, 2.1399 65967, 0. ey

errors. Apply group weights
Scikit(P.), Cython(P.)

; (
" : "angstrom”, Energ':,.-s le": "electronvolt","StressStyle": "kB" s
L

.66761, @.00398],[ 6.66761, 752.92696

*Auto conversion from VASP OUTCAR coming soon!




15 I Descriptors

LAMMPS Breakdown

Calculator class calls LAMMPS to convert
atomic coordinates into descriptors.

* Thread parallel implementation via Mpi4Py

and LAMMPS python library interface. k..
PIPs (n* Scrape Scrape Scrape
St ) oo ST podain -" e PR, CRE
MTP (n*) pl’DJE.'I:'[IDr'I GTTP (2,3) invariant At Store atom positions, single or multiple fits
SMAP (4) . Erfnﬂrf"ﬂég_y polynomials distance _ ground truth values
& lirnit /" sharp fL}:r'ICIIDI'IS histograms Wasserstein C
\ metric
®@ & ®® - . @@ - @
smooth density auerdge sorted oy (o @ @ @ @ @ @ @ @ @
_SoAP(3) correlation - U'Sta"cesﬂ WLl Calculator z Calculator 4_ Calculator
Wavelets (3) Call LAMMPS (P,) el Lclismm for
NICE {n*) { pectral FP (n) Collect DeSCﬁptorS single or mu tlp e 11ts
— SPRINT (n)
. sorted C
. Bigenvalues
! = LI
LODE (n) ;
symmetriz Solver
local field Apply group weights
Scikit(P.), Cython(P.)
symmetry
other relatio
family of fea
named features (body order) ‘l l’
2,3,4: radial, angular, dihedrals |
n: n-body Cartesian

n*: complete n-body linear basis coordinates Musil et. al. Chem. Rev. (2021) 121,



16 I Regression

Simple Nodel Form . i R T

ESNAP = Uy + Z [aﬁl)(Bk — B ) + a:(n)(

min(|lw - Da —T||% — y,lla|l') ."

p Scrape Scrape
W . D . Set Of T : D FT Dclfg'y up configs (P.) h N%I;li I?aral]ehsm for h
. . . . Store atom positions, single or multiple fits
Weight descriptors training

e | C
 Dis a N*M matrix

Calculator z (l\llallculaglor <_ Calculator
. . . ode parallelism for
N Scales with number of training points Collect Descriptory | single or multiple it

M Scales with the descriptor expansion

N>>M, can exceed local memory -£ _’ :

Solver == Solver -— Solver
Apply group weights Distributed Irllemor_y

1l h ) regression solver via
Scikit(P:), Cython(P.) Scal APACK (QR)

*Coupling to AutoDiff and Pytorch available!



17 I Parallelization

Timing Breakdown

« Cython backend to Solver class allow for
distributed memory regression —» QR
Decomposition via ScaLAPACK

 Each nodes’ object handles its own set of
training Data — ML-IAP fitting only limited
by resource availability

* Points are increasing descriptor basis,
Quadratic results in order of magnitude
larger M sizes

€ N*M matrix exceeds the 128Gb of local
shared memory, only possible with a distributed
solver.

« Gradient descent solvers are implemented,

Ini i AvrA alAawrarsr AamA AAA LIivwsmnArmarara ~dfAre A Hi4A~

Total Time To Solution (s)

Ratio Time To Solution

Linear SVD = Linear QR +
uadratic SVD uadratic QR ¢
100000
10000 .
¢ %
* .‘ .
1000 - ¢ $a,h
100 N L et
0.001 0.01 0.1 1 10
Matrix Size (N*M) per Node (x108)
100
L 3
10
1
0.1 &
0.01 : a2 s aaaaal . s aansl ‘.......I » 5 3 saanl 2 a3
0.001 0.01 0.1 1 10

Matrix Size (N*M) per Node (x108)

I I Em B



18 I Neural Network Models

More Memory Needed

* Non-linear, descriptor-based models of
atomic energy are simple to train, much
more complicated for forces

| : central atom index

Generate simple configs
modeled by harmonic

ripotential

0000

{ Randomly displace to make configs

o000 00
= — - =

-
] : neighboring atom index

Kk : descriptor id

15

Check if working :

10 1

Same procedure/architecture
as more realistic examples!

Example :
https://github.com/rohskopf/SimpleML-1AP

lo—e-e

5 using PyTorch or Jax

05 7

\_

00 4

8D, OE,

Model force
&

_]. 5 T T T T Li
-15 =10 —0.5 0o 05 14a

Finite difference force

15

ﬁ%yk: 8’!‘3 3D3k

Computed before fitting | | Computed during
via neighbor lists. fitting via autograd.




9 | Software Development https://github.com/FitSNAP/FitSNAP

Pull requests Issues Marketplace Explore

¢ pip inSta” ﬁtsnap H FitSNAP |/ FitSNAP  Public <% Pin @ Unwatch 4 - Y Fork 29 Starred 56 - I
i

or
git clone https://...

¢» Code () Issues 7 11 Pull requasts 2 ) Discussions (*) Actions fH Projects 00 wiki (1) Sacurity

F master - ¥ 4 branches T 0tags Go to file Add file = Code = About =

Software for generating SNAP machine-
mitwood Merge pull request #82 from ... ..  dc71517 4 hours ago %) 377 commits learning interatomic potentials

° Open iSSUGS’ requeSt features’ and B github/workflows Change tests to only run on PR to master 3 days ago M Readme

. . . it

d ISCU SS Wlth developerS/USe rS Vla i m docs Merge remote-tracking branch ‘origin/master... 17 months ago # 56 stars
= Changed names of Standard Fe pot names 1o ... 4 days ago

GitHub [ o] °

4 watching
B fitsnap3 Small tweaks and a commit to check 22 haours aga 29 forks
| tests Small tweaks and a commit to check 22 hours aga
Releases
* Example cases roug hly charlessievers Changed names of Standard Fe pot names to be mo... - 4 days ago ¥%) History o e e
follow our publications;
Fe: SNAP + Magnetic Spin

Create a new release

B Fe_Linear NPJZ021 Changed names of Standard Fe pot names to be mo... 4 days ago Packages
InP: Explicit Multi-Element No packages publshes
] B InP_JPCAZ2020 Adding detailed error files with filenames, only Ta ex... 9 months ago Publish your first package
Descriptors
. Bm Ta_linear JCP2014 Adding detailed error files with filenames, only Ta ex... 9 months ago )
Ta_PACE: Atomic Cluster . Contributors @

- . Ta_PACE small changes related to additional solvers. Input de... 15 days ago e -
Expansion Model HT@IOM®
Et B Ta_Quadratic_JCP2018 Adding detailed error files with filenames, only Ta ex... 9 months ago

C.
B Taxyz Fix transpose XYZ scraper bug and add XYZ scraper... 3 months ago Languages
fm wWBe_PRB2019 Adding detailed error files with filenames, only Ta ex... 9 months ago ® Fython 22.0% Cython 8.2%

Other 1.0%



https://github.com/FitSNAP/FitSNAP

20 I Magnetic Materials Simulations

Chemical, Functional Complexity + Molecular Dynamics

» Electronic structure or Spin-Lattice - Atoms interact via nonmagnetic interatomic potential, U(R)
simulations have been the only options
for many decades.

« Former lacks scalability, latter lacks Spin Dynamics

any real dynamic or finite temperature - Atoms interact via exchange function which conserves total
effects angular momentum

2
- Hup = L=+ UR)

— — —_— — 2
- Ho=-3NJ®R)[si 5 - 1] IV KR [(si-5) - 1]
e Molecular-Spin Dynamics
- Hysp = Hj+H, = 2-"—‘2+U(R)—):f"- (R)[si-57-1] -
Msp = Ji s T iy i,j]ij Si * §j

L Kij(R) [(?{ Ej)z - 1] (Implemented in LAMMPS!)




21 I Magnetic Materials Simulations

First-Principles Training Set
" DFT Calculations )

Hopw o %%
‘J’Mﬁ' 2

w
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E
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o
n
vy

dbec gppee {2
oe doge & gele
o gecide geed P
epsdogesdngeie

Spin Hamiltonian

ag = —i.."(r”] [8;-8;—1]
—):x ) |38 1]
P> DAKOTA
@
)
Do
%%,
Yo ©
< Spin Lattice Dynamics
%, pin y
J%c;"@of_ N
R E=Ye({ri.a))
/> fm=]
5

N
F=Y7(rys))
"Data-driven magneto-elastic predictions 3 '

with scalable classical spin-lattice P= Y Pirs))
i=1

dynamics.” , NPJ

M(T;, P)

1.2

Fe; Everyone’s Favorite

Transformational capability to study
magnetic materials at the grain scale

Explicit treatment of spin dynamics

captures the second order phase
transition at Curie temperature

"Nikolov et. al. npj Comp.Mét. 80

o)
o

Cp (3.mol~t K1)
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22 I Magnetic Materials Simulations
50T . .
Y i Nikolov et. al. J. Mat. Sci.
Finite Temperature Magnetism & [
= 40 % mmmmm  Spin Cond.
* Hot/cold regions are spaced 28.8 nm = \ == Phonon Cond.
apart % 30F \
N %
« Thermal gradient established by o t \
c 9nk
setting hot region'to: =1.08T,,, 8 20¢ h‘,,
% - Sk s i L%
i :
Hot region E 10 X ":--1..__1:’_"”____ -
et - Bl B X %mexTox
I_ﬂ' T T B Y - 111
400 600 800 1000 1200
Cold region Temperature, K

Temperature
Tmin Il T = Tmax

 Magnon-phonon scattering
significantly reduces
conductivity

« Magnons more conductive
than phonons where T <



23 ‘ Alloy Design From MD

Jpurnal of

MATERIALS RESEARCH [ ] 2000 o0 ..%. <
o ot ot ... ® @
[ [ I T K
Alphabet Soup 0.0 8 0.0 °%° (iescessces 00r 00000800
© 00 0000 JISSNST oo oot loee sette
« Enormous design space, how can ... o oo ‘.‘.}::.}:{.‘:&:.:.:.‘ '.:}.J:.E.:z.}
: : : - X
mterat.omlc potentlalls. he_lp. 000000 COIOI9009 DY .:{‘
« Chemical transferability is paramount! Seees e
itps:/ /o ore/10.21203/r5.2.15081,/v onventional alloy High-entropy alloy
f H ] FCC strong and ductile HEAs (o MoNbTaTi
L) iacc refractory HEAS] P, 1300
e e v ecin o F N 100 | #
b Ha._ — ! Light weight H‘.Eﬁs SR = MoNbTaTi - 1100 - .,
o Comprehensive DFT study of MoNbTaTi $ 1000
— properties through composition space! ¢ x .
L J. Startt et al., Materials Design 213 (2022) § - . .
. G
. ~ 600 o o
o o o e
fr1 - Training set to create machine learned 500 1
interatomic potentials (MLIAPs)! 4003 200 400 600 800 1000
Temperature(°C)

'Ac Th Pa U Np Pu Am Cm Bk cf I_Es 'Fm Md No

Lietal., J. Mater.
Res., Vol. 33, (2018)

Coury et al., Acta Mat. 175 (2019)



24 ‘ Alloy Design From MD

Beyond DFT

Untrained composition (vary 2 elements)

M018.1Nb23.6Ta23.6Ti34.7

SNAP | New DFT

C11(GPa)  239.6 237.6 0.8 %
C12 (GPa)  143.6 129.7 10.7 %
C44 (GPa) 39.5 37.8 4.5 %
B (GPa) 175.6 165.7 6.0 %
G (GPa) 42.7 43.6 2.1%
E (GPa) 118.5 120.1 1.3 %

Startt et al., Materials & Design. 213 (2022)

Active learning (AL) and
uncertainty quantification (UQ)
modules in development!

Increase system size

It
1 E .

Young’s Modulus from stress- | ¥ i

strain curve: ~120 GPa oo obz oo

Sample new MD environments, add DFT data




25

Active Learning

Unknown Unknowns

 Training structures can come from a
variety of sources.

* ML-IAP are fit w.r.t. descriptors, not our
physical intuition of what matters

Tee.
eefe .
25

‘T
cf

fale

* o
8.
X

L 5
«

C

o
of
e® 7

7

Interfaces Liquids

From sampling the descriptor space:

o Generate Random Tertragonal Box
470 < Volume < 990 A°

o Generate Random Atom Locations
32 < Natoms <40

oK > 0 : Minimize Local Entropy

Assembled
Training

oK < 0 : Maximize Local Entropy

 But how to adapt to failures observed in M



Active Learning
Re-Train ML-IAP

optimize
hyper-parameters

Carve out structures r\

Hands-on
Route: )> FitSNAP.py
DAKOTA
Run DFT et G e e e
Structure hype?—ppfian:ai:\f\aeters
v""gﬁfgﬂction from f\ Structure
00 % 6® DFT orediction from
Automated ' @ )} i ‘a :
kind-of): FIRSNAP.py ' a,g}‘ﬁ
( ! e DAKOTA ,ﬁ

/

energy and force errors

material property objective functions &0 Ru N D FT

USPEX : A. Oganov et al. / J. Chem. Phys. 124, 244704 (2006)




.- | Conclusions and Path Forward

Aidan Thompson, Mary Alice
Cusentino, Krupa Ramasesha,
Svetoslav Nikolov, Charlie Sievers,
David Montes do Oca Zapian,
Danny Perez, Nick Lubbers, Julien
Tranchida, Steve Plimpton, Ivan
Oleynik, Jon Willman, Ember

« Data-driven interatomic
potentials (SNAP, SNAP-
NN) allow for MD
predictions of challenging
material problems.

* Thank you to all my collaborators: ‘

Number of Particles (N)

*  While harder to quantify,

the fidelity of our MD Standard oo Sikorski, Megan McCarthy, James

simulations needs to be a Parallel VD Goff, Drew Rohskopf, James

key consideration Simulated Time () Stewart, Carlos Pereyra, Nat Trask, |
Accuracy Michael Sakano, and many others!
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28 Exascale ML-MD doi.org/10.1145/3458817.3487400

= 2.6 billion atom diamond sample, 0.5x1.5 um
= Shock wave in <110> direction initiated by piston, v, = 7 km/s.

m  Novel mechanism of inelastic deformations observed for the 15t time - multiple cracks create multiple sound waves which
interfere while propagating towards the elastic front

Transformative opportunity - direct atomic-scale insight by running simulations at experimental time and length scales


https://doi.org/10.1145/3458817.3487400

