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Tokamak Simulation

m Achieve temperatures of 100M deg K (6x Sun temp.)
m Energy confinement times O(1 — 10) min.

structure
m loss of plasma confinement, plasma interacts with wall
m huge thermal energy loss (thermal quench)
m possible discharge of very large electrical currents (20MA) into structure
m ITER can sustain only a limited number of significant disruptions/instabilities
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A vertical displacement event

Definition

Disruption event in Tokamak devices with sudden loss of plasma confinement
and vertical movement towards wall.

Precursor Thermal quench Current quench
- —
7~ N~ .
Disruption & »
Currents induced in walls # '
Vertical displacement event »
Runaway electrons »

1. Fast temperature drop = change in MHD equilibrium, j x B ~ 0 = loss of vertical position control.

2. Temperature drop = resistivity increase — plasma current drop + ohmic to runaway current
conversion.

3. Plasma current drop = magnetic field rearrangement, i.e. VDE.
4. VDE = Induce large electromagnetic force in the walls with halo current.




4 | Compressible visco-resistive MHD
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plus appropriate boundary conditions.

Discretization

m First order cG. m DCO on equation (1) & (2).

m VMS (convective & saddle point m Lagrange multiplier for
stabilization). V-B=0.
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5 | Block Linear System

Newton linearized stabilized finite element discretization

Fs Bg’' Y..| [ AB —Ig
Be L& Cus A\ | = | —n
y4 Fost Alupgt —Tu,g

m Fg - Magnetics terms
m L, - Lagrange multiplier, VMS stabilization laplacian
m F..: - Momentum, Density, and Temperature terms

u
Upst = | p
T
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Results - Monolithic AMG

m Monolithic AMG preconditioned GMRES

m Deal with elliptic diffusion operator stiffness
m Not intended to deal with off-diagonal Alfven wave physics

m Relaxation: proc. based domain decomposition Schwarz
m overlap 1 with ILU subsolve

m Increasing time step size, up to a multiple of Alfven CFL,
CFLI™

m CFL,=)\dt/h< CFLQaX
)= |u| + |ug
m us = [Bl/\/prio

m 663,984 dofs, 144 mpi ranks

m Linear solve to 10~'2, ensure correct physics




7 I Results - Monolithic AMG

Linear lts. Setup time Solve time  Total Linear Time
CFLT® | per non-Lin It. per non-Lin It. per non-Lin It.  (Setup + Solve)
50 28.89 2.44 1.94
100 75.01 2.43 4.97
200 221.46 2.43 16.93
400 236.16 2.45 18.34

m Increasing iteration/solve time.

m Linear solve stagnates before we reach target CFL timescales

m Detrimental for scaling with mesh size
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8 I Operator Splitting
Approximately factor of 3 x 3 system into two 2 x 2 systems.

Fg Yost] [Fa™ Fe Bs'
MSplil‘ = I I Chst Bg L,
Z Foet | |

m Groups magnetics and solenoid constraint
m Groups interaction between Lorenz force and convective term of magnetics
m Develop Alfven wave propagation mode (fast hyperbolic time scale)

FB BBT Ynst FB BBT Ynst
MSplit = | Bg L, Cst| *J = |Bs L Cps
Z ZFg 'Bg' Fug y4 Fost

m Structural perturbation Z Fs ' Bg' termis "small"

Cyr, Shadid, Tuminaro, Pawlowski, Chacén, A new approximate block factorization preconditioner for two-dimensional incompressible (reduced)
May 23, 2022 r€sistive mhd, 2013.



9 I Operator Splitting - Implementation

Block LU decomposition

Fg

_1 ~
Mgpiir =
Z

Q

Ynst FBi1

Fnst
Ynst

Fnst -Z FB_1 Ynst

Fe Bg’
BB Lr

Fs Bg'
BB I-r

Murphy, Golub, Wathen, A note on preconditioning for indefinite linear systems, 2000.

Cyr, Shadid, Tuminaro, Pawlowski, Chacén, A new approximate block factorization preconditioner for two-dimensional incompressible (reduced)

May 23, 2022 €SIStive mha, 2013.




9 I Operator Splitting - Implementation

Block LU decomposition
[Fg Yost| [Fg™ Fe Bs’ ]\
L Z Fnst
L Yoot | Fg BgT -
~ Bg FBf1 | L, — B FB;I BBT
L Fnst —-Z FB_1 Ynst

Murphy, Golub, Wathen, A note on preconditioning for indefinite linear systems, 2000.

Cyr, Shadid, Tuminaro, Pawlowski, Chacén, A new approximate block factorization preconditioner for two-dimensional incompressible (reduced)
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Operator Splitting - Inverses

I Yo I Fs Bg’ -
Mgh = | BgFg~' 1 St

SIMPLE-type Schur complement approximation

Frst —ZF8 ™" Ynet & Snst 1= Fnst — Z(absrowsum(Fg)) ™" Ypst

L, —BegFs ' Bg’ ~ S, := L, — Bg(absrowsum(Fg))~' Bg’
Need to compute the inverses for Sps, S;, and Fg.
m Spg is the primary Alfven term

Cyr, Shadid, Tuminaro, Pawlowski, Chacén, A new approximate block factorization preconditioner for two-dimensional incompressible (reduced)
resistive mhd, 2013.




11 I Results - Operator Splitting Block Precond.

Operator Splitting Block Preconditioner

m Preconditioned GMRES, using the Operator Splitting Block Preconditioner
m Inverses (Spst, Si, and Fg) computed with AMG

m Relaxation: proc. based domain decomposition Schwarz, overlap 1 with ILUT
subsolve
m ILUT subsolve, threshold=0.01, fill=1.75

m Increasing time step size, up to a multiple of Alfven CFL, CF
m CFL, = A dt/h < CFLT®
B A= (Ul + |ug
m us = |B|/ /i

m 626,832 dofs, 36 mpi ranks

m Linear solve to 1012, ensure correct physics

max
La
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Results - Operator Splitting

m Lundquist number S = 3 x 103

Linear lts. Setup Time Solve Time Total
CFLT® | per non-Lin It. per non-Linit. pernon-Linlt.  Time
50 26.19 12.66 7.96 9895.41
100 30.44 13.80 9.49 6396.47
200 36.96 14.59 11.68 4589.73
400 48.79 15.18 15.59 3762.11
800 102.39 15.66 33.40 3806.38

m Expensive setup time (Schur complement S,s; many non-zeros)
m Near CFL}® = 500, fluids CFL becomes important




13 | Block Linear System - Alt. Ordering

Newton linearized stabilized finite element discretization

Fnst zZ AuﬂSf —Tupg
Yost FB Bg T AB =| /s
Cnst BB Lr AN N\

m Fg - Magnetics terms
m L, - Lagrange multiplier, VMS stabilization laplacian
m F..: - Momentum, Density, and Temperature terms

u
Upst = | p
T
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14 | Operator Splitting - Inverses - Alt. Ordering

I T Fro Z - I
M;;t = FB BSBT Fg | Smag | - Ynst Fnsti1
L — OB

SIMPLE-type Schur complement approximation
F — Yost Frst ' Z ~ Spag := FB — Ynst(absrowsum(Fst)) ' Z
L —BgFs "B’ ~ S, := L, — Bg(absrowsum(Fg)) ™' Bg "

Need to compute the inverses for F, S;, Spag and Fg.
B Sy is the primary Alfven term
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15 I Results - Operator Splitting - Alt

m Lundquist number S = 3 x 103

Linear lts. Setup Time Solve Time Total
CFLT® | per non-Lin It. per non-Linit. pernon-Linlt.  Time
50 33.84 7.27 6.49 6368.90
100 41.07 7.36 7.89 4081.69
200 51.64 7.46 9.96 2962.71
400 67.67 7.49 13.10 2435.92
800 95.25 7.54 18.67 2288.86

m Less expensive setup and solve due to sparser operators
m Higer initial linear iterations, better scaling with CFL}®*
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16 I Future Work

m Refine mesh size
m Resolve elliptic diffusion operator
m Weak scaling
m Include off-diagonal flow/constraint coupling Cys: in
block preconditioner
m Subblock solves and Relaxation
u Snsty Smagy SLy Fg, Fnst
m Heterogenous domain
m Model magnetics outside of the plasma region
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