
Exceptional service in the national interest

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and
Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S.

Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

Evidence-Based Foundations for
Software Engineering Practice in
Scientific Computing

Reed Milewicz, Evan Harvey, Miranda Mundt, Derek
Trumbo, Wesley Coomber

2022 Tri-lab Advanced Simulation & Computing
Sustainable Scientific Software Conference (ASC S3C)

May 24th-26th, 2022

Illustrations from Undraw.co, with icons from The Noun Project
(artists Adrien Coquet, Kiran Shastry, Gan Khoon Lay)

SAND2022-7038CThis paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in
the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Overview

2

• Introduce Evidence-Based Practice (EBP) in
Software Engineering
v EBP à Integrating current best evidence from

research with practical experience and human
values to improve decision-making related to
software development and maintenance.

• Showcase how our team has explored the use
of EBP techniques in our work, and share our
lessons learned.
v When we combine peer-reviewed evidence with our

professional experience and put it to use in real-
world contexts, we learn.

v We share and discuss what we learn as to build
consensus around those practices.

Exp
eri

enc
e Empiricism

Software Development Practice Continues to Evolve

3Carleton, Anita D., et al. Architecting the Future of Software Engineering: A National Agenda for Software
Engineering Research and Development. Software Engineering Institute, Carnegie-Mellon University. 2021.

Architecting The Future of Softw
are Engineering

A National Agenda for
Software Engineering
Research & Development

SE, DevOps, ITSM are
understudied in

scientific computing
contexts.

We have limited time and resources
to stay current with the latest

findings and trends, and there is
always something new to learn.

What works well in
conventional industry may or

may not translate to our
domain.

Staying Current With Best Practices is Challenging

4

• Being software professionals at the national labs, we bring to scientific
computing a rich heritage of tools, techniques, and methodologies backed
by over five decades of research and practice.

• We have a responsibility to act on the basis of the best available evidence
as insights continue to emerge. But that’s easier said than done!

Problem Statement: How do we know we are staying current best practices and doing what’s right for
our customers?

What is Evidence-Based Practice?

5

The goal of evidence-based
practice (EBP) in software
engineering is to integrate
current best evidence from
research with practical
experience and human values
to improve decision-making
related to software
development and
maintenance.

Dyba, Tore, Barbara A. Kitchenham, and Magne Jorgensen. "Evidence-based software engineering for practitioners." IEEE software 22.1 (2005): 58-65.

Parallels with Evidence-Based Practice in Medicine

6

Evidence-based medicine is not just about the research. Research is
imperfect. And even if the evidence is perfectly quantifiable, neither your
experience nor patient values are.
Part of the beauty and joy of medicine is that it can’t be reduced down to a
set of optimized algorithms. Instinct, judgment, and communication all play
key roles.
However, we still need the skills to appraise the evidence we’re using, even if
we can’t perfectly measure and quantify its validity. Otherwise, we’d be
practicing medicine in the dark, operating completely on faith that what we’re
doing is helping our patients.

Strong, Eric. “An Introduction to Evidence-Based Medicine.”
Strong Medicine; YouTube. 2017 <https://www.youtube.com/P-G2veeYC1Q>

Dr. Eric N. Strong, MD

https://www.youtube.com/watch?v=P-G2veeYC1Q

Navigating the Evidence Hierarchy

7

Systematic Reviews
and Meta-Analyses

Peer-Reviewed
Primary Studies

Our Expertise
and Customer Needs

Qu
al

ity
 o

f E
vi

de
nc

e

Breadth of Evidence

Ø The foundation of all
decision-making is our
experiences as
practitioners and the
needs of our
customers.

Ø Incorporating high-
quality evidence helps
reduce bias and
mitigate risk, enabling
better decision-making.

Example: How Do We Build Secure DevSecOps
Infrastructure?

8

What is our consensus as a team on
best practices in this space? What
do we already know about this
topic?

What has worked well in previous
DevOps pipeline solutions we’ve
built? How can we extend these
solutions to incorporate security?

What do we know about what our
customers want and need? What are
their values and priorities?

Our Experiences

and Customer Values

Example: How Do We Build Secure DevSecOps
Infrastructure?

9

How have others
approached this problem?

Are there vetted
and independently

peer-reviewed case studies?

Peer-Reviewed

Primary Studies

Are there best practices in
the use of tools and

techniques that could help
us in achieving our goals?

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3101739, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, JUNE 202X 1

Identifying Challenges for OSS Vulnerability
Scanners - A Study & Test Suite

Andreas Dann⇤, Henrik Plate†, Ben Hermann‡, Serena Elisa Ponta†, Eric Bodden⇤§

Abstract—The use of vulnerable open-source dependencies is a known problem in today’s software development. Several
vulnerability scanners to detect known-vulnerable dependencies appeared in the last decade, however, there exists no case study
investigating the impact of development practices, e.g., forking, patching, re-bundling, on their performance.
This paper studies (i) types of modifications that may affect vulnerable open-source dependencies and (ii) their impact on the
performance of vulnerability scanners. Through an empirical study on 7,024 Java projects developed at SAP, we identified four types of
modifications: re-compilation, re-bundling, metadata-removal and re-packaging. In particular, we found that more than 87% (56%,
resp.) of the vulnerable Java classes considered occur in Maven Central in re-bundled (re-packaged, resp.) form. We assessed the
impact of these modifications on the performance of the open-source vulnerability scanners OWASP Dependency-Check (OWASP)
and Eclipse Steady, GitHub Security Alerts, and three commercial scanners. The results show that none of the scanners is able to
handle all the types of modifications identified. Finally, we present Achilles, a novel test suite with 2,505 test cases that allow replicating
the modifications on open-source dependencies.

Index Terms—Security maintenance, Open-Source Software, Tools, Security Vulnerabilities.

F

1 INTRODUCTION

THE use of open-source software (OSS) is an established
practice in software development, even for industrial

applications as much as 75% of the code comes from OSS
[1], [2], [3], [4]. At the same time, more than 67% of the
applications include vulnerable OSS with on average 22
individual vulnerabilities [1].

Vulnerabilities in widely-used OSS, e.g., Jackson, Apache
Commons, or Struts, already proved to have serious conse-
quences. An (in)famous example is the Equifax breach [5],
[6], which was caused by the vulnerability CVE-2017-
5638 [7] in Apache Struts2.

To detect vulnerable OSS, research and industry have de-
veloped several open-source vulnerability scanners, e.g., the
open-source tools OWASP Dependency-Check (OWASP)
and Eclipse Steady, the free tool GitHub Security Alerts, and
commercial tools such as Snyk, Black Duck, or WhiteSource.

Since vulnerabilities in open-source dependencies pose a
high risk, scanners should detect them with high precision
and recall. However, developers and distributors frequently
fork, patch, re-compile, re-bundle, or re-package existing

• ⇤ The authors are with the Chair for Secure Software Engineering, Heinz
Nixdorf Institute, Paderborn University, Germany.
E-mail: hFirst Namei.hLast Namei@uni-paderborn.de

• † The authors are with SAP Security Research Mougins, France.
E-mail: hFirst Namei.hLast Namei@sap.com

• ‡ The author is professor for Secure Software Engineering, Technical
University of Dortmund, Germany.
E-mail: ben.hermann@cs.tu-dortmund.de

• § The author is Director for Software Engineering and IT-Security at
Fraunhofer IEM, Paderborn, Germany.
E-mail: eric.bodden@iem.fraunhofer.de

Manuscript received July, 2020;

OSS [2], [3], [4], [8]. As a result, the same vulnerable code
may occur in different, modified dependencies, thereby
posing a challenge for the detection of known-vulnerable
OSS [9], [10], [11].

Previous studies [1], [2], [3], [8], [12] investigate to which
extent open-source or industrial applications include (vul-
nerable) OSS. However, they do not study modifications,
like patching, re-compiling, or re-packaging, that may affect
vulnerable open-source dependencies, nor their impact on
the performance of vulnerability scanners. Furthermore, the
studies do not present data sets or test suits that facilitate
the comparison and evaluation of vulnerability scanners.

While existing benchmarks such as the Evaluation
Framework for Dependency Analysis [13] allow one to
evaluate single features of vulnerability scanners, e.g., de-
pendency resolution, they do not provide a ground truth for
assessing their performance. Moreover, they do not contain
test cases for modifications such as re-compiled and re-
packaged classes.

This paper studies the types of modifications that may
affect open-source dependencies and investigates their im-
pact on the performance of vulnerability scanners.

We conducted a two-folded case study on 7,024 Java
projects developed at SAP , the world’s third-largest soft-
ware development company. First, we scanned the 7,024
Java projects with Eclipse Steady, OWASP Dependency
Check, and a commercial vulnerability scanner to gain an
in-depth understanding of the use of open-source depen-
dencies at SAP . We applied three different vulnerability
scanners that use different vulnerability databases to avoid
being subject to the shortcomings of a particular scanner
or database. Our study shows that the projects include
about 79% of OSS transitively, supporting the studies by
Pashchenko et al. [12], [14]. To investigate the prevalence of
vulnerable OSS, we classify the vulnerabilities reported for

Authorized licensed use limited to: Sandia National Laboratories. Downloaded on May 13,2022 at 16:56:14 UTC from IEEE Xplore. Restrictions apply.

Less is More: Supporting Developers in
Vulnerability Detection during Code Review

Larissa Braz
larissa@i�.uzh.ch

University of Zurich

Christian Aeberhard
christian.aeberhard2@uzh.ch

University of Zurich

Gül Çalikli
handangul.calikli@glasgow.ac.uk

University of Glasgow

Alberto Bacchelli
bacchelli@i�.uzh.ch
University of Zurich

ABSTRACT
Reviewing source code from a security perspective has proven

to be a di�cult task. Indeed, previous research has shown that de-
velopers often miss even popular and easy-to-detect vulnerabilities
during code review. Initial evidence suggests that a signi�cant cause
may lie in the reviewers’ mental attitude and common practices.

In this study, we investigate whether and how explicitly asking
developers to focus on security during a code review a�ects the
detection of vulnerabilities. Furthermore, we evaluate the e�ect
of providing a security checklist to guide the security review. To
this aim, we conduct an online experiment with 150 participants,
of which 71% report to have three or more years of professional
development experience. Our results show that simply asking re-
viewers to focus on security during the code review increases eight
times the probability of vulnerability detection. The presence of
a security checklist does not signi�cantly improve the outcome
further, even when the checklist is tailored to the change under
review and the existing vulnerabilities in the change. These results
provide evidence supporting the mental attitude hypothesis and call
for further work on security checklists’ e�ectiveness and design.

Preprint: https://arxiv.org/abs/2202.04586
Data and materials: https://doi.org/10.5281/zenodo.6026291

CCS CONCEPTS
• Security and privacy ! Software security engineering; •
Software and its engineering! Software evolution.

KEYWORDS
code review, security vulnerability, checklist, mental attitude

1 INTRODUCTION
A vulnerability is a “�aw or weakness in a system’s design, imple-

mentation, or operation and management that could be exploited to
violate the system’s security policy” [71]. The later vulnerabilities
are discovered in the software development cycle, the higher the
associated �xing costs are [56]. Therefore, to avoid vulnerabilities,
organizations are shifting security to earlier stages of software de-
velopment [2]. However, security experts have to motivate and con-
vince developers of the importance of �nding vulnerabilities [80].
Yet, where to locate security within an organization remains a chal-
lenge [79]. For instance, a programmer working solo is likely to
create avoidable security problems because they can naturally have
only one point of view [86]. A solution to avoid these issues can be
adopting security practices during code review.

Code review is a widely agreed-on practice [15] recognized as
a valuable tool for reducing software defects and improving the
quality of software projects [3, 4, 10]. Previous studies show that
code review is also an important practice for detecting and �xing

security bugs earlier [46, 81] and has positive e�ects on secure soft-
ware development [48, 49, 70]. However, adopting security practices
requires a large amount of knowledge which takes time to learn,
and it can be hard to motivate [57, 83]. In fact, security issues (even
popular ones, such as Sensitive Data Exposure [65]) still often reach
production code, despite code review practices. So, how can we
better support code reviewers in detecting vulnerabilities?

In the study we present in this paper, we investigate three inter-
ventions that aim to tackle the problem by guiding the focus of the
reviewer. One is based on the developer’s mental attitude hypothesis
and two are based on an additional security checklists hypothesis.

Studies in the literature indicate developers’ mental attitude
as a leading cause for the introduction of vulnerabilities in the
code [50, 88, 91]. Speci�cally, vulnerabilities may be introduced
because developers do not consider security as their responsibil-
ity [50] or strongly rely on other project members, processes, and
technologies [88]. A potential solution to resolve issues related
to developers’ mental attitude is giving explicit instructions re-
garding security. Indeed, Naiakshina et al. [51, 52] showed positive
e�ects when explicitly instructing computer science students and
freelance developers to implement secure password storage dur-
ing coding. Nevertheless, writing and reviewing code are di�erent
activities [41], with even cultural di�erences among teams [10],
therefore evidence about the former may not translate to the latter.
Some preliminary yet promising evidence exists that the devel-
opers’ mental attitude could play a role in the context of code
review too [17]. Using a one-group pretest-posttest experimental
design [24], Braz et al. [17] found that a signi�cant number of de-
velopers who missed a popular vulnerability during a code review
could �nd it when explicitly warned about its presence.

In the context of code inspections [30], the use of checklists to
support developers has been extensively studied [44, 54, 58, 68]
with positive results [26]. The OWASP foundation [33] proposes a
popular code review guide that contains a security checklist [63]. It
comprises items that guide the developers in �nding security issues
during a review. Despite the positive results of using checklists dur-
ing code inspection and the e�orts by the OWASP foundation, the
e�ectiveness of checklists in contemporary code review practices
and to support vulnerability detection has not been established yet.

In our study, we set up three interventions (treatments) that we
compare among themselves and to a review baseline (control). The
baseline (No security Instructions–NI) consists of asking develop-
ers to perform a code review without giving special instructions.
The �rst treatment (Security Instructions–SI), based on the mental
attitude hypothesis, explicitly instructs developers to perform the
review from a security perspective. The second (Security Checklist–
SC) and third (Tailored security Checklist–TC) treatments addition-
ally ask developers to use a security checklist in their review. The

ar
X

iv
:2

20
2.

04
58

6v
2

 [c
s.S

E]
 1

2
Fe

b
20

22

Example: How Do We Build Secure DevSecOps
Infrastructure?

10

Are there trends in DevSecOps we should be aware of? Is
the field converging on certain solutions?

Systematic Reviews

and Meta-Analyses

,QIRUPDWLRQ DQG 6RIWZDUH 7HFKQRORJ\ ��� ������ ������

$YDLODEOH RQOLQH �� $XJXVW ����
����������� ���� (OVHYLHU %�9� $OO ULJKWV UHVHUYHG�

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

Challenges and solutions when adopting DevSecOps: A systematic review
Roshan N. Rajapakse a,b,<, Mansooreh Zahedi a, M. Ali Babar a,b, Haifeng Shen c
a CREST - The Centre for Research on Engineering Software Technologies, School of Computer Science, The University of Adelaide, Adelaide, Australia
b Cyber Security Cooperative Research Centre, Australia
c The HilstLab, Peter Faber Business School, Australian Catholic University, Sydney, Australia

A R T I C L E I N F O

Keywords:
DevOps
Security
DevSecOps
Continuous Software Engineering
Systematic Literature Review

A B S T R A C T

Context: DevOps (Development and Operations) has become one of the fastest-growing software development
paradigms in the industry. However, this trend has presented the challenge of ensuring secure software delivery
while maintaining the agility of DevOps. The efforts to integrate security in DevOps have resulted in the
DevSecOps paradigm, which is gaining significant interest from both industry and academia. However, the
adoption of DevSecOps in practice is proving to be a challenge.
Objective: This study aims to systemize the knowledge about the challenges faced by practitioners when
adopting DevSecOps and the proposed solutions reported in the literature. We also aim to identify the areas
that need further research in the future.
Method: We conducted a Systematic Literature Review of 54 peer-reviewed studies. The thematic analysis
method was applied to analyze the extracted data.
Results: We identified 21 challenges related to adopting DevSecOps, 31 specific solutions, and the mapping
between these findings. We also determined key gap areas in this domain by holistically evaluating the
available solutions against the challenges. The results of the study were classified into four themes: People,
Practices, Tools, and Infrastructure. Our findings demonstrate that tool-related challenges and solutions were
the most frequently reported, driven by the need for automation in this paradigm. Shift-left security and
continuous security assessment were two key practices recommended for DevSecOps. People-related factors
were considered critical for successful DevSecOps adoption but less studied.
Conclusions: We highlight the need for developer-centered application security testing tools that target the
continuous practices in DevSecOps. More research is needed on how the traditionally manual security practices
can be automated to suit rapid software deployment cycles. Finally, achieving a suitable balance between the
speed of delivery and security is a significant issue practitioners face in the DevSecOps paradigm.

1. Introduction

DevOps (Development and Operations) has led to a paradigm shift
aimed at removing the traditional boundaries (or ‘‘silos’’) of the soft-
ware development and software operations teams [1]. This shift re-
sulted in reducing the time between committing a modification in a
system and that change being placed in a production environment [2].
DevOps is currently a widely adopted software development paradigm
in the industry [3]. This interest in adoption is due to the gains in
business value reported by industry practitioners and academic re-
searchers [4]. The most commonly reported benefit is the ability to
deploy releases faster and more frequently [5]. However, the practices
of rapid delivery have presented new challenges to organizations.

< Corresponding author at: CREST - The Centre for Research on Engineering Software Technologies, School of Computer Science, The University of Adelaide,
Adelaide, Australia.

E-mail addresses: roshan.rajapakse@adelaide.edu.au (R.N. Rajapakse), mansooreh.zahedi@adelaide.edu.au (M. Zahedi), ali.babar@adelaide.edu.au
(M.A. Babar), Haifeng.Shen@acu.edu.au (H. Shen).

One such challenge is ensuring the security of software outputs to
stakeholders while maintaining the agility of DevOps [6].

Traditionally, security is treated as a non-functional requirement
[10], which is handled at a later stage of the software development
life-cycle [11,12]. Accordingly, a set of standard application security
tests or activities are conducted on a software release. These activities
either need substantial manual effort (e.g., security code review [13])
or are time consuming tasks (e.g., Dynamic Application Security Testing
(DAST) [14]). Therefore, applying the same security tests in the context
of DevOps would hinder the speed of deployments. At the same time,
with the rising number of attacks, the security of software is critical
in today’s context, particularly in a cloud environment. There are

https://doi.org/10.1016/j.infsof.2021.106700
Received 14 March 2021; Received in revised form 22 July 2021; Accepted 27 July 2021

Rapid Reviews

Processes Our Team Has Experimented With

11

Best Practices Meetings
When we combine peer-reviewed evidence with our professional experience
and put it to use in real-world contexts, we learn. We then share and discuss

what we learn to build consensus around those practices.
Milewicz, Reed, James Willenbring, and Dena Vigil. "Research, Develop, Deploy: Building a Full Spectrum Software Engineering and Research
Department." Research Software Engineers in HPC (RSE-HPC-2020). 2020. SAND2020-11072C

Key Process: Best Practices Meetings

12

• We have to stay current with tools and
best practices, and we must always be
looking for better ways to design, develop,
and maintain software. We must build
strong teams and promote long-term
growth.

• Our team holds weekly Best Practices
Meetings, round-table discussions where
team members join together to deliberate
and discuss the processes and principles
that lead to high-quality software.

• Examples include…
v Strategies for backlog prioritization
v Containers and how to use them
v Understanding the Liskov Substitution

Principle
v How to conduct effective code reviews

Cultivating Knowledge
and Skills Enhancing Productivity

Empowering
Independence Facilitating Teamwork

Improving Decision-
Making Raising Morale

Areas of Improvement Include…

D. Trumbo and R. Milewicz, “Poster: Towards a Culture of Continuous Learning
and Improvement within RSE Teams.” 2021 Collegeville Workshop on Scientific

Software, 2021.

Key Process: Rapid Reviews

13

• A Rapid Review (RR) Protocol is a
systematic, time-boxed literature review
designed to deliver evidence in a timely and
accessible way.
Ø Motivated by practical problems and report

results directly to practitioners in the field.
Ø Simplify or omit certain steps from full systematic

reviews, enabling turnaround times measured in
days rather than months

• RR topics have included…
Ø Requirements gathering techniques
Ø Software quality incentivization
Ø Best practices in CI/CD pipelines
Ø Optimizations for containers

R. Milewicz, “Towards Evidence-Based Practice in Scientific Software Development,” Sandia National Lab.(SNL-NM), Albuquerque, NM (United
States), Tech. Rep., 2020.

Example: Rapid Review on Requirements Elicitation
Techniques

14

Ask Acquire Appraise Apply Analyze

What requirements techniques
have evidence for their
effectiveness, and when and where
should they be applied, particularly
in domain-specific and/or
online/remote contexts?

,(7�6RIWZDUH

5HVHDUFK�$UWLFOH

5HTXLUHPHQWV�HOLFLWDWLRQ�WHFKQLTXHV��D
V\VWHPDWLF�OLWHUDWXUH�UHYLHZ�EDVHG�RQ�WKH
PDWXULW\�RI�WKH�WHFKQLTXHV

,661����������
5HFHLYHG�RQ���WK�-XQH�����
5HYLVHG���QG�-DQXDU\�����
$FFHSWHG�RQ���WK�0DUFK�����
(�)LUVW�RQ���WK�0D\�����
GRL����������LHW�VHQ����������
ZZZ�LHWGO�RUJ

&DUOD�3DFKHFR���,YDQ�*DUFtD�� ��0LU\DP�5H\HV�
�'LYLVLRQ�GH�(VWXGLRV�GH�3RVJUDGR��8QLYHUVLGDG�7HFQRORJLFD�GH�OD�0L[WHFD��&DUUHWHUD�D�$FDWOLPD�.P�������+XDMXDSDQ�GH�/HRQ��2D[DFD��0p[LFR
�(�PDLO��LYDQ#PL[WHFR�XWP�P[

$EVWUDFW��5HTXLUHPHQWV�HOLFLWDWLRQ�LV�D�FULWLFDO�DFWLYLW\�WKDW�IRUPV�SDUW�RI�WKH�UHTXLUHPHQWV�HQJLQHHULQJ�SURFHVV�EHFDXVH�LW�KDV�WR
GLVFRYHU�ZKDW�WKH�VRIWZDUH�PXVW�GR�WKURXJK�D�VROLG�XQGHUVWDQGLQJ�RI�WKH�ZLVKHV�DQG�QHHGV�RI�WKH�YDULRXV�VWDNHKROGHUV�DQG�WR
WUDQVIRUP�WKHP�LQWR�VRIWZDUH�UHTXLUHPHQWV��+RZHYHU��LQ�VSLWH�RI�LWV�UHOHYDQFH��WKHUH�DUH�RQO\�D�IHZ�V\VWHPDWLF�OLWHUDWXUH�UHYLHZV
WKDW� SURYLGH� VFLHQWLILF� HYLGHQFH� DERXW� WKH� HIIHFWLYHQHVV� RI� WKH� WHFKQLTXHV� XVHG� WR� HOLFLW� VRIWZDUH� UHTXLUHPHQWV�� 7KLV� VWXG\
SUHVHQWV�D�V\VWHPDWLF�UHYLHZ�RI�UHOHYDQW�OLWHUDWXUH�RQ�UHTXLUHPHQWV�HOLFLWDWLRQ�WHFKQLTXHV��IURP������WR�������E\�DGGUHVVLQJ�WZR
UHVHDUFK� TXHVWLRQV�� :KLFK� PDWXUH� WHFKQLTXHV� DUH� FXUUHQWO\� XVHG� IRU� HOLFLWLQJ� VRIWZDUH� UHTXLUHPHQWV"� DQG� :KLFK� PDWXUH
WHFKQLTXHV� LPSURYH� WKH� HOLFLWDWLRQ� HIIHFWLYHQHVV"� 3ULRU� OLWHUDWXUH� DVVXPHV� WKDW� VXFK� µPDWXULW\¶� OHDGV� WR� D� EHWWHU�TXDOLW\
XQGHUVWDQGLQJ�RI�VWDNHKROGHUV¶�GHVLUHV�DQG�QHHGV��DQG�WKXV�DQ�LQFUHDVHG�OLNHOLKRRG�WKDW�D�UHVXOWLQJ�VRIWZDUH�ZLOO�VDWLVI\�WKRVH
UHTXLUHPHQWV�� 7KLV� UHVHDUFK� SDSHU� IRXQG� ���� VWXGLHV� WR� DQVZHU� WKHVH� TXHVWLRQV�� 7KH� ILQGLQJV� GHVFULEH� ZKLFK� HOLFLWDWLRQ
WHFKQLTXHV�DUH�HIIHFWLYH�DQG�LQ�ZKLFK�VLWXDWLRQV�WKH\�ZRUN�EHVW��WDNLQJ�LQWR�DFFRXQW�WKH�SURGXFW�ZKLFK�PXVW�EH�GHYHORSHG��WKH
VWDNHKROGHUV¶�FKDUDFWHULVWLFV��WKH�W\SH�RI�LQIRUPDWLRQ�REWDLQHG��DPRQJ�RWKHU�IDFWRUV�

�௑,QWURGXFWLRQ
5HTXLUHPHQWV� HQJLQHHULQJ� �5(�� LV� RQH� RI� WKH�PRVW� GLIILFXOW� DUHDV
ZLWKLQ� WKH� VRIWZDUH� GHYHORSPHQW� SURFHVV� EHFDXVH� LW� GHFLGHV� DQG
GHILQHV�ZKDW� KDV� WR� EH� GHYHORSHG� >��� �@�� 7KXV�� 5(� LV� RQH� RI� WKH
EUDQFKHV�RI�VRIWZDUH�HQJLQHHULQJ�WKDW�DURVH�IURP�WKH�QHHG�WR�VROYH
WKH� GLIILFXOW� WDVNV� RI� FROOHFWLQJ�� DQDO\VLQJ�� DQG� YHULI\LQJ� WKH
VRIWZDUH� UHTXLUHPHQWV� >�@�� $FFRUGLQJ� WR� &KULVWHO� DQG� .DQJ� >�@�
.RWRQ\D� DQG� 6RPPHUYLOOH� >�@�� DQG� %HUHQEDFK� HW� DO�� >�@�� WKH� 5(
SURFHVV� LV� IUHTXHQWO\� GHVFULEHG� E\� WKH� IROORZLQJ� DFWLYLWLHV�
HOLFLWDWLRQ�� DQDO\VLV�� VSHFLILFDWLRQ�� YDOLGDWLRQ� DQG�YHULILFDWLRQ�� DQG
PDQDJHPHQW�� 7KLV� VWXG\� LV� IRFXVHG� LQ� WKH� ILUVW� VWDJH� RI� 5(�
UHTXLUHPHQWV�HOLFLWDWLRQ��ZKHUH�DOPRVW�DOO�WKH�5(
V�WLPH�LV�RFFXSLHG
E\� GLYHUVH� SUREOHPV�ZKHQ� VWDNHKROGHUV� LQWHUDFW� WR� REWDLQ� TXDOLW\
UHTXLUHPHQWV� >��� ��� �@�� 0RUHRYHU�� ZLWKLQ� WKH� UHTXLUHPHQWV
HOLFLWDWLRQ� SURFHVV�� WKHUH� LV� D� VHW� RI� QHFHVVDU\� DFWLYLWLHV�� WKH
VWDNHKROGHU� LGHQWLILFDWLRQ� DQG� WKH� QHJRWLDWLRQ� DQG� VHOHFWLRQ� RI
WHFKQLTXHV� WR� HOLFLW� WKH� ZLVKHV� DQG� QHHGV� RI� WKH� YDULRXV
VWDNHKROGHUV� >�@�� ,Q� WKLV� FRQWH[W�� WKHUH� DUH� GLYHUVH� WHFKQLTXHV� IRU
GLVFRYHULQJ� DQG� REWDLQLQJ� WKH� VRIWZDUH� UHTXLUHPHQWV�� EXW� LW� LV
QHFHVVDU\� WR� KDYH� WKH� NQRZOHGJH� WR� LGHQWLI\� ZKLFK� RQHV� DUH� WKH
PRVW� VXLWDEOH� IRU� D� VSHFLILF� SURMHFW� >�@�� 7KXV�� FRQVLGHULQJ� WKDW� LQ
RUGHU� WR� LPSURYH� VRIWZDUH� TXDOLW\�� LW� LV� QHFHVVDU\� WR� LPSURYH� WKH
TXDOLW\� RI� WKH� REWDLQHG� UHTXLUHPHQWV�� LW� LV� FUXFLDO� WR� LPSURYH� WKH
VHOHFWLRQ� RI� WKH� WHFKQLTXHV� XVHG� E\� WKH� UHTXLUHPHQWV� HQJLQHHU� WR
GLVFRYHU�WKH�VWDNHKROGHUV¶�QHHGV�
)URP� WKLV� SHUVSHFWLYH�� LW� LV� LPSRUWDQW� WR� FRQVLGHU� WKDW

UHTXLUHPHQWV�HOLFLWDWLRQ�GRHV�QRW�MXVW�KDSSHQ�E\�LWVHOI��7KLV�SURFHVV
LV� VWURQJO\� UHODWHG� WR� WKH� FRQWH[W� LQ� ZKLFK� LW� LV� FDUULHG� RXW�� WKH
VSHFLILF� FKDUDFWHULVWLFV� RI� WKH� SURMHFW�� WKH� RUJDQLVDWLRQ�� WKH
HQYLURQPHQW��WKH�H[SHULHQFH��DQG�NQRZOHGJH�RI�WKH�DQDO\VW��DV�ZHOO
DV�WKH�FKDUDFWHULVWLFV�RI�WKH�HOLFLWDWLRQ�WHFKQLTXH�HPSOR\HG�
7KHUHIRUH��LQ�WKLV�SDSHU��ZH�SUHVHQW�DQG�GLVFXVV�RXU�H[SHULHQFHV

RI� DSSO\LQJ� WKH� V\VWHPDWLF� OLWHUDWXUH� UHYLHZ� �6/5�� LQ� RUGHU� WR
JDWKHU� DQG� HYDOXDWH� DYDLODEOH� HYLGHQFH� WR� KHOS� WKH� UHTXLUHPHQWV
HQJLQHHU�WR�VHOHFW�WKH�SURSHU�WHFKQLTXH�IRU�UHTXLUHPHQWV�HOLFLWDWLRQ�
7KLV� SDSHU� LV� RUJDQLVHG� DV� IROORZV�� 6HFWLRQ� �� H[DPLQHV� RWKHU

DSSURDFKHV� UHODWHG� WR� 6/5� RQ� UHTXLUHPHQWV� HOLFLWDWLRQ�� 6HFWLRQ� �
GHVFULEHV�WKH�PHWKRGRORJ\�XVHG�WR�SHUIRUP�WKH�V\VWHPDWLF�UHYLHZ�
6HFWLRQ���SUHVHQWV�WKH�UHVXOWV�REWDLQHG�E\�DQVZHULQJ�WKH�HVWDEOLVKHG
UHVHDUFK� TXHVWLRQV�� 6HFWLRQ� �� VKRZV� ILQGLQJV� REWDLQHG� IURP� WKH

IDOVH�SRVLWLYH�VWXGLHV��6HFWLRQ���VXPPDULVHV� WKH�PDLQ�FRQFOXVLRQV
RI�WKLV�SDSHU�DQG�VRPH�IXWXUH�ZRUN��)LQDOO\��6HFWLRQ���SUHVHQWV�WKH
UHIHUHQFHV�DQDO\VHG�LQ�RXU�VWXG\�

�௑5HODWHG�ZRUN
1RZDGD\V�� WKHUH� DUH� VRPH� V\VWHPDWLF� UHYLHZV� UHODWHG� WR� WKH
DFWLYLWLHV�RI�WKH�UHTXLUHPHQWV�HOLFLWDWLRQ�SURFHVV��H�J��>��±��@��DQG
MXVW�D�IHZ�UHODWHG�WR�WKH�HIIHFWLYHQHVV�RI�WKH�UHTXLUHPHQWV�HOLFLWDWLRQ
WHFKQLTXHV� DQG� WKHLU� FKDUDFWHULVWLFV� �H�J�� >��±��@��� 7KHVH� VWXGLHV
DUH�EULHIO\�GHVFULEHG�EHORZ�
'DYLV� HW� DO�� >��@� SUHVHQWHG� D� V\VWHPDWLF� UHYLHZ� RI� HPSLULFDO

VWXGLHV�DERXW�WKH�HIIHFWLYHQHVV�RI�HOLFLWDWLRQ�WHFKQLTXHV��7KLV�VWXG\
KDV� DGGUHVVHG� RQH� SDUWLFXODU� UHVHDUFK� TXHVWLRQ��:KDW� LV� WKH�PRVW
HIILFLHQW� HOLFLWDWLRQ� WHFKQLTXH� LQ� D� SDUWLFXODU� VHWWLQJ"� 7KH� PRVW
VLJQLILFDQW�UHVXOWV�FDQ�EH�VXPPDULVHG�DV�IROORZV���L��WKH�LQWHUYLHZV�
PRVWO\�VWUXFWXUHG��PD\�EH�RQH�RI�WKH�PRVW�HIIHFWLYH�WHFKQLTXHV���LL�
PDQ\� WHFKQLTXHV� XVXDOO\� FLWHG� LQ� OLWHUDWXUH� �H�J�� FDUG� VRUWLQJ�
UDQNLQJ��DQG�WKLQNLQJ�DORXG��DUH�OHVV�HIIHFWLYH�WKDQ�LQWHUYLHZV���LLL�
WKH� UHTXLUHPHQWV� HQJLQHHU
V� H[SHULHQFH� GRHV� QRW� DSSHDU� WR� EH� D
UHOHYDQW�IDFWRU��DQG��LY��WKH�DQDO\VHG�VWXGLHV�GR�QRW�VKRZ�SRVLWLYH
HIIHFWV�ZKHQ�SURWRW\SLQJ�LV�XVHG�GXULQJ�WKH�HOLFLWDWLRQ��7DNLQJ�LQWR
DFFRXQW�WKHVH�UHVXOWV��WKLV�UHVHDUFK�SDSHU�FRQFOXGHV�WKDW�LQWHUYLHZV
DUH� WKH� PRVW� HIIHFWLYH� WHFKQLTXH� EHFDXVH� WKH\� HQDEOH� DQDO\VWV� WR
REWDLQ�PRUH�LQIRUPDWLRQ�WKDQ�WKH�RWKHU�DQDO\VHG�WHFKQLTXHV�
0RUHRYHU�� 'LHVWH� HW� DO�� >��@� JHQHUDWHG� NQRZOHGJH� DERXW� WKH

DSSOLFDELOLW\�RI�HOLFLWDWLRQ�WHFKQLTXHV�E\�DJJUHJDWLQJ�WKH�UHVXOWV�RI
H[LVWLQJ� HPSLULFDO� VWXGLHV�� 7KH� DXWKRUV� SURYLGH� VRPH
UHFRPPHQGDWLRQV� DERXW� WKH� VLWXDWLRQV�� ZKHUH� WKH� UHTXLUHPHQWV
HOLFLWDWLRQ� WHFKQLTXHV� DUH� XVHIXO�� 7KHVH� UHFRPPHQGDWLRQV� DUH� WKH
UHVXOW� RI� DQ� 6/5� FDUULHG� RXW� WR� DQVZHU� WKH� IROORZLQJ� UHVHDUFK
TXHVWLRQ�� :KDW� HOLFLWDWLRQ� WHFKQLTXHV� DUH� PRVW� HIIHFWLYH"� 7KH
DFKLHYHG� ILQGLQJV� VWDWH� WKDW�� �L�� WKH� HIILFLHQF\� RI� VWUXFWXUHG
LQWHUYLHZV� WHFKQLTXH� LV�PRUH� WKDQ� WKH� VFDOLQJ� WHFKQLTXHV�� �LL�� WKH
VFDOLQJ� WHFKQLTXHV� DQG� WKH� ODGGHULQJ� WHFKQLTXH� KDYH� WKH� VDPH
HIILFLHQF\���LLL��WKH�VFDOLQJ�WHFKQLTXHV�DUH�PRUH�GLIILFXOW�WR�XVH�WKDQ
WKH� XQVWUXFWXUHG� LQWHUYLHZV�� �LY�� WKH� XQVWUXFWXUHG� LQWHUYLHZV� DUH
HDVLHU� WR� XVH� WKDQ� WKH� ODGGHULQJ� WHFKQLTXH�� DQG� �Y�� WKH� VFDOLQJ
WHFKQLTXHV�DQG�WKH�ODGGHULQJ�WHFKQLTXHV�SUHVHQW�WKH�VDPH�GLIILFXOW\
ZKHQ� XVHG�� 7KLV� UHVHDUFK� SDSHU� DJUHHV� WKDW�� DFFRUGLQJ� WR� WKH
DQDO\VHG� HYLGHQFH�� LQWHUYLHZV� DUH� PRUH� HIIHFWLYH� IRU� PDQ\

,(7�6RIWZ���������9RO�����,VV�����SS���������
��7KH�,QVWLWXWLRQ�RI�(QJLQHHULQJ�DQG�7HFKQRORJ\�����

���

Authorized licensed use limited to: Sandia National Laboratories. Downloaded on May 18,2020 at 14:04:17 UTC from IEEE Xplore. Restrictions apply.

Secondary Studies

Information and Software Technology 92 (2017) 194–221
Contents lists available at ScienceDirect

Information and Software Technology
journal homepage: www.elsevier.com/locate/infsof

Contextual attributes impacting the effectiveness of requirements
elicitation Techniques: Mapping theoretical and empirical research
Dante Carrizo a , ∗, Oscar Dieste b , Natalia Juristo c
a University of Atacama, Avda Copayapu 485, Copiapó, Chile
b Technical University of Madrid, Boadilla del Monte, Madrid 28660, Spain
c University of Oulu, Oulu, Finland
a r t i c l e i n f o
Article history:
Received 24 September 2016
Revised 18 June 2017
Accepted 10 August 2017
Available online 16 August 2017
Keywords:
Elicitation methods
Requirements elicitation
Contextual attributes
Systematic mapping study

a b s t r a c t
Background: Software engineers can utilise a myriad of elicitation techniques to capture relevant informa-
tion in order to specify requirements. The effectiveness of these techniques varies depending on the con-
text in which the elicitation takes place. So, it is important to identify the attributes that represent this
context. Objective: This paper aims to match theoretical to empirical research on contextual attributes that
influence elicitation technique effectiveness. Method: We conduct a systematic mapping study to identify
proposed attributes (by theoretical works) and attributes studied empirically. Then we map empirical re-
sults with theoretical proposals. Results: 60% of theoretically proposed attributes have been studied em-
pirically. There seems to be some degree of coordination between theory and empiricism. However, there
is empirical confirmation of the impact of only a third of the theoretically proposed attributes. Conclu-
sions: These results call for more empirical research in order to evaluate beliefs with respect to elicitation
techniques.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction
Software requirements are often elicited by means of interviews

[1,2] . However, more elicitation techniques are likely to be neces-
sary to gather the full range of requirements for most software
systems. There are a variety of elicitation techniques that can be
used. Some reviews account for tens of elicitation techniques [3–
5] . Many of these techniques have been imported from fields like
cognitive psychology, anthropology, sociology and linguistics [6] .

Elicitation techniques are of different kinds [7] , and they may
therefore be more effective in some situations than in others. Each
type of problem, development team or stakeholder group outlines
a context that fits, to a greater or lesser degree, the conditions
under which certain elicitation techniques get its highest perfor-
mance. The contextual attributes describe such conditions. Contex-
tual attributes characterise aspects of the environment in which
the elicitation process takes place, such as characteristics of par-
ticipants or problem. The values of the contextual attributes may
or may not match the characteristics required by the elicitation
techniques, determining whether or not they are suitable for use

∗ Corresponding author.
E-mail addresses: dante.carrizo@uda.cl (D. Carrizo), odieste@fi.upm.es (O. Dieste),

natalia.juristo@oulu.fi (N. Juristo).

in a particular situation. For instance, if there is a set of stake-
holders, group techniques fit better; People per Session is a con-
textual attribute. Such contextual attribute assesses whether ex-
ist groups or individuals and the matching between context con-
ditions (number of stakeholders) and technique adequacy (appro-
priate for group conditions) allows to choose the most promising
elicitation technique. If there are different points of view among
stakeholders, techniques that facilitate convergence will be more
appropriate; Consensus among informants is the attribute that
describes whether in the context exist agreement or not across
stakeholders. Again matching among context conditions and con-
textual attributes identifies appropriate techniques. If stakeholders
have difficulty expressing their thinking, structured techniques will
perform better, and the contextual attribute Articulability allows
to identify such context condition. If the elicitor has low experi-
ence, simpler techniques may be more suitable, since contextual
attributes such as Elicitation Experience or Experience with Elici-
tation Techniques allow to match techniques suitable for the con-
dition elicitor’s low experience. If the problem domain is complex,
cognitive techniques may work while others do not, and so on. In
other words, some contextual attributes of the project may influ-
ence the behaviour of elicitation techniques, and thus their effec-
tiveness [8] . So, it is critical to understand which values of contex-
tual attributes get the best of a technique. For example, the open

http://dx.doi.org/10.1016/j.infsof.2017.08.003
0950-5849/© 2017 Elsevier B.V. All rights reserved.

Primary Studies

Software Professionals’ Attitudes Towards
Video as a Medium in Requirements

Engineering

Oliver Karras(B)

Software Engineering Group, Leibniz Universität Hannover,
30167 Hannover, Germany

oliver.karras@inf.uni-hannover.de

Abstract. In requirements engineering (RE), knowledge is mainly com-
municated via written specifications. This practice is cumbersome due
to its low communication richness and effectiveness. In contrast, videos
can transfer knowledge more richly and effectively. However, video is
still a neglected medium in RE. We investigate if software profession-
als perceive video as a medium that can contribute to RE. We focus on
their attitudes towards video as a medium in RE including its strengths,
weaknesses, opportunities, and threats. We conducted a survey to explore
these attitudes with a questionnaire. 64 out of 106 software professionals
completed the survey. The respondents’ overall attitude towards video
is positive. 59 of them stated that video has the potential to improve
RE. However, 34 respondents also mentioned threats of videos for RE.
We identified the strengths, weaknesses, opportunities, and threats of
videos for RE from the point of view of software professionals. Video is a
medium with a neglected potential. Software professionals do not funda-
mentally reject videos in RE. Despite the strengths and opportunities of
video, the stated weaknesses and threats impede its application. Based
on our findings, we conclude that software professionals need guidance
on how to produce and use videos for visual communication to take full
advantage of the currently neglected potential.

Keywords: Requirements engineering · Video · Attitude · SWOT
Survey

1 Introduction

One of the most widely used documentation options to convey stakeholders’
needs is a written specification as suggested by standards such as ISO/IEC/IEEE
29148:2011 [1]. However, the supposedly simple handover of a written specifica-
tion insufficiently supports the rich information and knowledge transfer which
is necessary to develop an acceptable system [9,15]. Abad et al. [2] found the
need for improving requirements communication by exceeding pictorial represen-
tations in written specifications. The authors proposed to invest more efforts in
c! Springer Nature Switzerland AG 2018
M. Kuhrmann et al. (Eds.): PROFES 2018, LNCS 11271, pp. 150–158, 2018.
https://doi.org/10.1007/978-3-030-03673-7_11

Selecting a Software Elicitation Technique According to
Layers of Knowledge and Preciseness:

A Case Study

Maria-Isabel Sanchez-Segura
(Carlos III University, Madrid, Spain

misanche@inf.uc3m.es)

Fuensanta Medina-Dominguez
(Carlos III University, Madrid, Spain

fmedina@inf.uc3m.es)

Diana-Marcela Vásquez-Bravo
(Carlos III University, Madrid, Spain
Diana.marcela.vasquez@gmail.com)

Gustavo Illescas

(Universidad Nacional del Centro de la Provincia de Buenos Aires, Tandil, Argentina
illescas@exa.unicen.edu.ar)

Cynthya García de Jesús

(Carlos III University, Madrid, Spain
cygaje@gmail.com)

Abstract: This paper presents a case study analyzing a set of software engineering elicitation
techniques. The aim of the case study is to demonstrate that completeness and preciseness are
two criteria to be incorporated into the set of existing parameters used to classify and select
which elicitation technique to apply depending on the project context variables. Completeness
refers to how well each elicitation technique elicits domain, task and strategic requirements,
and preciseness refers to how many requirements a software engineer is able to elicit using each
technique. Based on the results, we can state that completeness and preciseness perform
differently for each analyzed technique. Therefore, these two criteria are necessary in order to
improve elicitation technique selection. Also, the techniques used in this case study have been
ranked according to the above-mentioned criteria, that is, which technique included in this
study, is best suited for which requirements layer and which technique can be expected to elicit
most requirements during the knowledge externalization phase.

Keywords: Elicitation techniques, layers of knowledge, software engineering, knowledge
elicitation
Categories: D.2, D.2.0, D.2.1

1 Introduction

The software industry is knowledge intensive [Tiwari, 2012]. A software engineer’s
goal is to transform a customer’s problem into a solution that has to be implemented

Journal of Universal Computer Science, vol. 23, no. 4 (2017), 385-403
submitted: 27/9/16, accepted: 29/3/17, appeared: 28/4/17  J.UCS

1000
149
38
19

	

	
	

Requirements Elicitation Techniques: Guidelines and
Recommendations

	

This briefing reports scientific evidence from a
Rapid Review on requirements elicitation
techniques and criteria for selecting them for use.
Motivating question(s): What requirements
techniques have evidence for their effectiveness,
and when and where should they be applied,
particularly in domain-specific and/or
online/remote contexts?

Findings

All the findings presented in this briefing are a
synthesis of results of nineteen scientific primary and
secondary studies. For instance: a secondary study of
140 primary studies on elicitation techniques, a
survey of 64 requirements analysts on the use of
multimedia communication in elicitation, and multiple
proposed models for selecting techniques.

Requirements engineering is perhaps the most critical
phase of software development, as it decides and
defines what has to be developed. The first stage of
requirements engineering is requirements elicitation,
which is the practice of studying and discovering the
requirements of a system through interactions with
stakeholders. A key challenge for the analyst is to
select the right technique (or combination of
techniques) to effectively and accurately gather these
requirements. There are numerous approaches which
are backed by decades of empirical research; a recent
systematic review by Pacheco et al. identifies over
twenty techniques that are considered “mature”.
However, the catch is that there is no one-size-fits-all
solution; there are situations in which a technique
might work and another in which the same approach
is likely to fail. In fact, it is often the case that analysts

use a combination of techniques to elicit
requirements.

This evidence briefing describes several popular
techniques that can be applied by an analyst of novice
to intermediate skill, with guidance on when to apply
them. Additionally, the briefing summarizes the best
available evidence regarding elicitation in domain-
specific and/or distributed contexts.

Who	is	this	briefing	for?	
1424	practitioners	aiming	to	conduct	
requirements	elicitation	with	
stakeholders.	
	
Where	do	the	findings	come	from?	
All	findings	of	this	briefing	were	
extracted	from	scientific	studies	on	
requirements	elicitation	techniques	
identified	during	a	rapid	review.	
	
What	is	a	Rapid	Review?	
It	is	a	process	that	searches	for	scientific	
studies	about	a	specific	topic,	extracts	
relevant	evidence,	and	synthesizes	the	
findings	in	order	to	support	decision-
making	in	real-world	software	
development	projects.	
	
What	is	included	in	this	briefing?	
A	list	of	several	popular	elicitation	
techniques	and	when	to	apply	them,	and	
recommendations	on	how	to	navigate	
projects	that	highly	are	domain-specific	
or	distributed.	

Evidence Briefing of
Requirements Gathering

Techniques and How to Use
Them

Apply Techniques in Real-
World Contexts

Best Practices
Meeting on RQ

Elicitation

Retrospective
Interview About RR

Discussion: Finding Common Ground With Evidence-
Based Practice

15

Exp
eri

enc
e Empiricism

• We accept that no team member is
perfect, no team is perfect, and no product
is perfect. There is always room for
improvement.

• We should always strive
for excellence, make
continuous learning
and improvement
activities part of the
team culture, and keep
each other
accountable.

• This requires a commitment to
humility, honesty, forgiveness, self-
reflection, and a willingness both to
give constructive feedback and
receive constructive feedback.

• We accept that we have a responsibility
to act on the basis of the best available

evidence as acquired through systematic
and rigorous investigation.

• We should always strive to
integrate current best

evidence with practical
experience and human

values to improve our
decision-making.

• This requires balancing imperfect
research alongside our instinct,

judgment, and communication. Even
if the evidence is perfectly

quantifiable, neither our experience
nor customer values are.

Practice

Enriches

Research

Conclusion

16

• In this talk, we…
• We defined evidence-based practice (EBP) in

software development means and why it
matters.

• We described the techniques our department
has explored to build consensus around best
practices.

• We discussed how to unite principles of
team-based continuous learning and
improvement with empiricism in software
engineering.

• Food For Thought: On the right is a word
cloud of the topics covered by all the
talks and tutorials at ASC S3C. Consider
all of the challenges that we face as
practitioners. How might EBP techniques
help us meet those challenges?

ASC

S3C

ABOUT THE SANDIA ANGLES TEMPLATES

17

Create impactful presentations, reports, and visuals with Sandia branded PowerPoint templates.

FEATURES
o 16:9 HD widescreen format
o Embedded Sandia font & colors

o Professional photo and text layouts available in the Sample Layouts deck
o Access fully editable charts, maps, and icons in the PowerPoint Graphics Library

o Easy to use placeholders crop photos without distortion
Note: To reduce file sizes, templates do not include Images. UUR photos can be accessed at Sandia’s Flickr page.

o Before submitting to Sandia Review and Approval, ensure only the appropriate markings are applied
to content slides and Slide Masters.

Browse additional
design templates at
creative.sandia.gov

Want more?Questions?
Get immediate support from Creative Services.

NM: (505) 844-7167 | CA: (925) 294-1010 | creative.sandia.gov
Revised 03.04.21

https://eims.sandia.gov/Workplace/getContent?vsId=%7B60C66A60-0000-C912-8749-1DD76BE491D9%7D&objectStoreName=EIMS.__.Content&objectType=document
https://eimsicn.sandia.gov/navigator/bookmark.jsp?desktop=EIMSContentDesktop&repositoryId=EIMSContent&repositoryType=p8&docid=Folder%2C%7BEC9927E3-E01C-467D-8E60-EDA18F274E3E%7D%2C%7BE0196E77-0000-CC12-A207-D7CC43527969%7D&mimeType=folder&template_name=Folder
https://eimsicn.sandia.gov/navigator/bookmark.jsp?desktop=EIMSContentDesktop&repositoryId=EIMSContent&repositoryType=p8&docid=Folder%2C%7BEC9927E3-E01C-467D-8E60-EDA18F274E3E%7D%2C%7BE0196E77-0000-CC12-A207-D7CC43527969%7D&mimeType=folder&template_name=Folder
https://www.flickr.com/photos/sandialabs/
https://wp.sandia.gov/creative/design-templates/
https://wp.sandia.gov/creative/

