National
Laboratories

The Evolution of Alegra’s Devops Ecosystem

Tim Fuller, Steve Bova, and Michael Powell

SandiaNationa Laboratorie s & mulimision abratry managed and cperated by Netonl Technor-
ogy and Enginoering Solutons of Sandia LLC, a wholly ownod supsidry of Fonoywal Inemational nc. for

the'U.s Bepartment of EnevgysNanonal isioar Socur Admnaralon under comtac, e NAGOBS525,
J V‘

oratories, |s.a.mu|t|m|55|on Iaboratorv'manaqed and'operated.b Natlonal echnoloq &.Enqmeerlnq.Squtlons.oi’Sandla aL
heJu.S.|D DE




Sonda

Overview (osts

In 2019, the Alegra team transitioned from a legacy set of tools that handled
building, testing, and running alegranevada to a new toolset we call toolset2.
These slides are an overview of toolset2.

Alegra

Alegra tooling modernizations
Example usage

Continuous Integration
Conclusion



Sandia
Laboratories

Alegra




Sandia
Laboratores

Alegra

Summary

Alegra is a roughly 25-year old code that provides approximate solutions to
multiphysics problems involving

m large-deformation Lagrangian, Eulerian, or ALE solid dynamics/hydrodynamics;

m electrical conductivity, magnetic induction/diffusion, nonlinear ohmic heating,
Lorentz forces;
m finite element discretizations;

m material data and equations of state;

m radiation transport, thermonuclear
burn; and

m piezo and ferro electric effects.




Sonda

Alegra i
Challenges
Code base Testing
m 25 year old “legacy code” m most testing done on gifted, and aging, hardware
m large code base with C++, Fortran, C, and Python m thousands of tests with tens of Gb of data
components m some tests take longer then 24 hours to execute
m extremely complex physics Building
Dependencies w maintaining builds on all SNL CEE-LAN and HPC
m complex dependencies: roughly 30 TPLs machines
including Dakota, Trilinas, Xyce ® maintaining builds on select SNL test beds
® each having its own build system m providing builds on customer machines for which
m some TPLs have proprietary licenses there are no SNL counterparts
Data Running
m relies on material data from a variety of sources m complex user interface
m |TAR, UCNI, LANL proprietary, and LLNL m interactions with many other tools: MPI, exodus,
proprietary data etc.
m not all customers are authorized to receive data
= No dedicated customer support personnel
= No dedicated devops personnel
5



Sonda

Alegra i

The legacy toolset

The Alegra “toolset” grew out of the necessity to manage these challenges. The
legacy toolset, among other things

m managed and built all TPLs;

® managed and built the alegranevada source code;

m managed source code testing;

® managed source code releases;

m defined compiler interfaces and compiler flags;

m provided scripts and tools for interacting with alegranevada; and

m provided user interfaces to alegranevada executables.

The legacy toolset began as a collection of csh scripts and has evolved in to a
mixed-language set of tools mostly written in Python and csh.




Sonda

Alegra e

The legacy toolset: addressing challenges

Code base: single SVN repository for code and data Testing: scripts to run nightly and weekly tests
= code/data kept in consistent states = code is kept safe from regressions
= difficult to manage access controls = scripts duplicate existing tools (cron, CDash, etc)
= no (easy to use) pull/merge request mechanism = test invocation does not match user invocation
Dependencies: “vendor” TPLs in to code repository, = no automated commit testing

patch if necessary, write custom build scripts for each Building: use custom build system

= consistent bullds —> consistent builds that we control from end to end

= mu.st do double duty as a package manager and = duplicates specialized tools Spack, CMake, etc.
build system

= requires considerable expertise to maintain

=> TPLs have drifted from upstream versions and are compiler files, MP! files, etc.

difficult to update

Running: provide scripts for interacting with the code
Data: store all data in centralized location 8 P P &

= Alegra (usually) invoked in a consistent wa:
- easy to find/navigate gra ( y) y

= scripts are not terribly consistent/integrated
= difficult access controls P v finteg

y . => Many of the Python scripts wrap older csh scripts
= must be filtered for releases to remove sensitive v v P P P

data = Python scripts written in Python2

The legacy toolset grew out of necessity, becoming very robust over the years. Still, it requires a
lot of tribal knowledge to understand all the parts and some design decisions have been made that
are not aging well.



Sandia
Laboratories

Alegra tooling modernizations




Alegra tooling modernizations

Requirements

Reduce technical debt: use outside tools to do what they do well

=

=
=
=

Spack for dependency management
CMake for alegranevada build system

vvtest with “scripting” interface for testing

git for version control

Sonda
Laboratoies




Sonda

Alegra tooling modernizations i

Requirements

Reduce technical debt: use outside tools to do what they do well
=> Spack for dependency management
= CMake for alegranevada build system
=> vvtest with “scripting” interface for testing
= git for version control
Protect UCNI, ITAR, and other proprietary data
= separate git repositories with access controls for sensitive components

= separate components brought in through git submodules

= “optin” instead of “opt out”




Sonda

Alegra tooling modernizations i

Requirements

Reduce technical debt: use outside tools to do what they do well
=> Spack for dependency management
= CMake for alegranevada build system
=> vvtest with “scripting” interface for testing
= git for version control

Protect UCNI, ITAR, and other proprietary data
= separate git repositories with access controls for sensitive components
= separate components brought in through git submodules
= “optin” instead of “opt out”

Be as future “proof” as possible
= Python3.6+

= developer and user documentation

= unit testing, code formatters, static analyzers used before code checkins




Sonda

Alegra tooling modernizations e

Requirements

Reduce technical debt: use outside tools to do what they do well

=
=
=
=

Spack for dependency management
CMake for alegranevada build system
vvtest with “scripting” interface for testing

git for version control

Protect UCNI, ITAR, and other proprietary data

=
=
=

separate git repositories with access controls for sensitive components
separate components brought in through git submodules

“opt in” instead of “opt out”

Be as future “proof” as possible

=
=
=

Python3.6+
developer and user documentation

unit testing, code formatters, static analyzers used before code checkins

Consistent and integrated design

=
=
=

developers, users, tests use same interfaces
implement capabilities as library functions with command line, user, and test interfaces, etc.

consistent code formatting (black), static analyzers (f1ake8)



Sonda

Alegra tooling modernizations i

toolset2

bin

nevada nevada scidev spack

defaults external nevada

command contrib

| test

util |

m layout borrows from Spack and the Linux filesystem hierarchy standard (FHS)
m toolset2 code written entirely in Python 3.6+

m extensive (and growing) documentation

10



Sonda

Alegra tooling modernizations i

toolset2

m bin directory contains executable scripts
m the bin/nevada script is the main entry point to toolset2

m nevada has many subcommands that run, build, and interact with Alegra
(and friends)

1



Sonda

Alegra tooling modernizations i
toolset2
bin etc lib opt
nevada
defaults
m the etc/nevada/defaults contains default configurations for toolset2 12



Sonda

Alegra tooling modernizations i

toolset2

external

nevada

command

cont:ib| | test |

util |

m the 1lib directory contains most python library code

m lib/nevada/external are vendored libraries

m lib/nevada/nevada/command has the implementations of the subcommands called by nevada
m lib/nevada/nevada/contrib are library functions that run and control Alegra and friends

m lib/nevada/nevada/test are internal toolset2 tests

®m lib/nevada/nevada/util are general utilities
13



Sonda

Alegra tooling modernizations i

toolset2

m the opt directory contains necessary external software that is actively
developed

m Spack for build management
m Scidev for Alegra integration testing
m Spack and Scidev are included in toolset2 as submodules

14
—



Sonda

Alegra tooling modernizations i

toolset2

bin etc lib opt

m the share directory contains other executables and data

m share/nevada/qa contains toolset2 QA scripts
15



Sonda

Alegra tooling modernizations e

toolset2

m the var directory contains variable data

m var/nevada/spack/environments contains pre-configured Spack
environments for supported machines

m var/nevada/spack/repo contains the “spackages” for Alegra and its TPLs

m Even though we don’t want to build and manage the TPLs ourselves, we
want to control build options (through the spackage) 1




Sonda

Alegra tooling modernizations e

git version control

Transitioned from svn version control to git
Latest version of alegranevada copied from teamforge.sandia.gov and
distributed as shown in cee-gitlab.sandia.gov/alegra/source-code

. . cee-gitlab sandia.gov/alegra/source-code
m Alegra-HEDP is a git submodule of

alegranevada

m sensitive HEDP data maintained
with strict access controls

m tests distributed with source

17



teamforge.sandia.gov
cee-gitlab.sandia.gov/alegra/source-code

Sonda

Alegra tooling modernizations i

Spack integration

Spack chosen for dependency and build management

What is spack?
m a package manager under active development at LLNL
m think rpm, brew, port etc

m designed from the ground up for building software in a scientific computing
environment

Why spack?
m actively developed and funded
m Spack team has expertise in compilers/mpi/architectures etc.
m Spack works closely with DOE to target software for upcoming machines

m enables easier transition from our copies of TPLs to their externally developed
and supported versions

18
—



Sonda

Alegra tooling modernizations i

Spack integration

Spack is included as a git submodule and wrapped with the nevada script
m including as a submodule guarantees our users/developers are using the right
version of Spack
m wrapping Spack allows us to

m isolate toolset2’s version of Spack from the user’s
m provide non-default Spack settings in a transparent way

Example: install alegra (and its dependencies) on a ceelan machine

$ nevada config set config:spack_env:cee-rhel7-gcc4.9.2-openmpil.8.3
$ nevada spack install alegranevada@master ~alegra-hedp

And on macOS

$ nevada config set config:spack_env:darwin-gcc8.3.0-openmpi3.1.3
$ nevada spack install alegranevadaCmaster ~alegra-hedp




Sandia

Alegra tooling modernizations e

TPL management

m Alegra group still maintains many TPLs

m each TPL was moved from the original svn repository to its own git repository

m TPLs having sensitive data were further separated to control access, for
example, the Lambda TPL

= was separated into source, SNL proprietary data, LANL proprietary data, each with
its own repository
m “spackage” for each TPL written that allows Spack to build the TPL to our specs

m when TPL is upgraded, its spackage will be changed to point to the native
upstream source, so that we transition away from maintaining our own copies
= Trilinos, DiomSpy, Boost, netCDF, hdf5, SEACAS, and Dakota are all now fetched
from their host repositories

Example: install TPL Dakota on the ceelan

$ nevada config set config:spack_env:cee-rhel7-gcc4.9.2-openmpil.8.3
$ nevada spack install dakota

20



Sonda

Alegra tooling modernizations i

Build system

Build system transitioned from homegrown xml+Makefile system to CMake
m CMake is an industry standard

m |leverage CMake’s expertise in building to specific targets/platforms

m requires CMake > 3.13




Sandia
Laboratories

Example usage




Sonda
Laboratories

Example usage

Developer workflow

$ git clone --recursive git@cee-gitlab.sandia.gov:alegra/source-code/alegrz
$ nevada spack develop -p “pwd /alegranevada alegranevada@master
$ nevada spack install alegranevada@master

m nevada spack develop marks the package as in development

m Invocations of nevada spack install for development packages build the
local source




Sandia
Laboratores

Example usage

Developer workflow: integration testing

$ nevada config set config:build_config:BUILD_CONFIG_PATH
$ nevada vvtest [options] +builtin
$ # check for broken tests

A simple test file

#VVT: keywords : fast 2D

#VVT: parameterize (autotype) : np = 1 4
import vvtest_util as vvt

from seacas import exo_diff

from nevada.contrib import alegra

def test():
alegra(vvt.NAME, dimension=3, nproc=vvt.np, preprocess="aprepro")
exo_diff (f"{vvt.NAME}.base_exo", f"{vvt.NAME}.exo", f"{vvt.NAME}.exodiff")

if __name == "__main__

import sys

sys.exit(test()) 2
—




Example usage

Sonda
Laboratories

Developer workflow: committing code

$ nevada vvtest +builtin

$ # check for broken tests

$ git add ...

$ git commit -m ...

$ git push origin <branch name>

Developers run the “builtin” integration tests
Developers are responsible for making sure to run the tests and that they pass
Developers push to feature branch and open merge request

Merge requests must pass pre-defined GitLab pipelines before merging




Sonda

Example usage .

Analyst workflow

$ 1s
runid.inp runid.py

runid. inp is the user’s normal Alegra input file and can be run in the normal way:

$ nevada run-alegra --preprocess=aprepro --nproc=4 runid

Under the hood, nevada run-alegra processes the command line arguments and
callsnevada.contrib.alegra.




Sonda

National
Example usage .

Analyst workflow

Alternatively, the user can run a Python script, such as the following

from nevada.contrib import alegra
def main():
alegra("runid", nproc=4, preprocess="aprepro")

if name == "__main__

main()

Use the nevada python command to execute the script:

$ nevada python runid.py

An advantage of this method over running the input file directly is that the python
script can contain any other pre and post processing steps, in a single location.




Sonda

Example usage .

Analyst workflow

Alternatively, the user can run a Python script, such as the following

from nevada.contrib import alegra
def main():
alegra("runid", nproc=4, preprocess="aprepro")

if __name__ == "__main__":

main()

Use the nevada python command to execute the script:

$ nevada python runid.py

An advantage of this method over running the input file directly is that the python
script can contain any other pre and post processing steps, in a single location.




Sandia
Laboratories

Continuous Integration




Sandia
Laboratores

Continuous Integration

Developer Workflow
SVN Commit Policy

m Developers responsible for running
tests Developer Work

m Developers solicited code review

m Developers have unlimited commit Y
privileges to SVN repository @Req“e“

= Enforced by verbal honor system

GitLab Runner

GIT Merge Request Policy

m Developer opens merge request
m Merge request cannot be merged
until
m Merge request is approved by
another developer
m GitLab pipelines pass
m Developers do not have push access

to master branch N




	Alegra
	Alegra tooling modernizations
	Example usage
	Continuous Integration
	Conclusion

