
The Evolution of Alegra’s Devops Ecosystem

Tim Fuller, Steve Bova, and Michael Powell

Sandia National Laboratories is a multimission laboratory managed and operated by National Technol-
ogy and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for

the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

SAND2022-7056CThis paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in
the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.



Overview
In 2019, the Alegra team transitioned from a legacy set of tools that handled
building, testing, and running alegranevada to a new toolset we call toolset2.
These slides are an overview of toolset2.

Alegra

Alegra tooling modernizations

Example usage

Continuous Integration

Conclusion

2



Alegra

3



Alegra
Summary

Alegra is a roughly 25‐year old code that provides approximate solutions to
multiphysics problems involving

large‐deformation Lagrangian, Eulerian, or ALE solid dynamics/hydrodynamics;
electrical conductivity, magnetic induction/diffusion, nonlinear ohmic heating,
Lorentz forces;
finite element discretizations;
material data and equations of state;
radiation transport, thermonuclear
burn; and
piezo and ferro electric effects.

4



Alegra
Challenges
Code base

2̃5 year old “legacy code”
large code base with C++, Fortran, C, and Python
components
extremely complex physics

Dependencies
complex dependencies: roughly 30 TPLs
including Dakota, Trilinos, Xyce
each having its own build system
some TPLs have proprietary licenses

Data
relies on material data from a variety of sources
ITAR, UCNI, LANL proprietary, and LLNL
proprietary data
not all customers are authorized to receive data

Testing
most testing done on gifted, and aging, hardware
thousands of tests with tens of Gb of data
some tests take longer then 24 hours to execute

Building
maintaining builds on all SNL CEE‐LAN and HPC
machines
maintaining builds on select SNL test beds
providing builds on customer machines for which
there are no SNL counterparts

Running
complex user interface
interactions with many other tools: MPI, exodus,
etc.

⇒ No dedicated customer support personnel
⇒ No dedicated devops personnel

5



Alegra
The legacy toolset

The Alegra “toolset” grew out of the necessity to manage these challenges. The
legacy toolset, among other things

managed and built all TPLs;
managed and built the alegranevada source code;
managed source code testing;
managed source code releases;
defined compiler interfaces and compiler flags;
provided scripts and tools for interacting with alegranevada; and
provided user interfaces to alegranevada executables.

The legacy toolset began as a collection of csh scripts and has evolved in to a
mixed‐language set of tools mostly written in Python and csh.

6



Alegra
The legacy toolset: addressing challenges
Code base: single SVN repository for code and data

⇒ code/data kept in consistent states
⇒ difficult to manage access controls
⇒ no (easy to use) pull/merge request mechanism

Dependencies: “vendor” TPLs in to code repository,
patch if necessary, write custom build scripts for each

⇒ consistent builds
⇒ must do double duty as a package manager and

build system
⇒ TPLs have drifted from upstream versions and are

difficult to update
Data: store all data in centralized location

⇒ easy to find/navigate
⇒ difficult access controls
⇒ must be filtered for releases to remove sensitive

data

Testing: scripts to run nightly and weekly tests
⇒ code is kept safe from regressions
⇒ scripts duplicate existing tools (cron, CDash, etc)
⇒ test invocation does not match user invocation
⇒ no automated commit testing

Building: use custom build system
⇒ consistent builds that we control from end to end
⇒ duplicates specialized tools Spack, CMake, etc.
⇒ requires considerable expertise to maintain

compiler files, MPI files, etc.
Running: provide scripts for interacting with the code

⇒ Alegra (usually) invoked in a consistent way
⇒ scripts are not terribly consistent/integrated
⇒ Many of the Python scripts wrap older csh scripts
⇒ Python scripts written in Python2

The legacy toolset grew out of necessity, becoming very robust over the years. Still, it requires a
lot of tribal knowledge to understand all the parts and some design decisions have beenmade that
are not aging well.

7



Alegra tooling modernizations

8



Alegra tooling modernizations
Requirements
Reduce technical debt: use outside tools to do what they do well

⇒ Spack for dependency management
⇒ CMake for alegranevada build system
⇒ vvtest with “scripting” interface for testing
⇒ git for version control

Protect UCNI, ITAR, and other proprietary data
⇒ separate git repositories with access controls for sensitive components
⇒ separate components brought in through git submodules
⇒ “opt in” instead of “opt out”

Be as future “proof” as possible
⇒ Python3.6+
⇒ developer and user documentation
⇒ unit testing, code formatters, static analyzers used before code checkins

Consistent and integrated design
⇒ developers, users, tests use same interfaces
⇒ implement capabilities as library functions with command line, user, and test interfaces, etc.
⇒ consistent code formatting (black), static analyzers (flake8)

9



Alegra tooling modernizations
Requirements
Reduce technical debt: use outside tools to do what they do well

⇒ Spack for dependency management
⇒ CMake for alegranevada build system
⇒ vvtest with “scripting” interface for testing
⇒ git for version control

Protect UCNI, ITAR, and other proprietary data
⇒ separate git repositories with access controls for sensitive components
⇒ separate components brought in through git submodules
⇒ “opt in” instead of “opt out”

Be as future “proof” as possible
⇒ Python3.6+
⇒ developer and user documentation
⇒ unit testing, code formatters, static analyzers used before code checkins

Consistent and integrated design
⇒ developers, users, tests use same interfaces
⇒ implement capabilities as library functions with command line, user, and test interfaces, etc.
⇒ consistent code formatting (black), static analyzers (flake8)

9



Alegra tooling modernizations
Requirements
Reduce technical debt: use outside tools to do what they do well

⇒ Spack for dependency management
⇒ CMake for alegranevada build system
⇒ vvtest with “scripting” interface for testing
⇒ git for version control

Protect UCNI, ITAR, and other proprietary data
⇒ separate git repositories with access controls for sensitive components
⇒ separate components brought in through git submodules
⇒ “opt in” instead of “opt out”

Be as future “proof” as possible
⇒ Python3.6+
⇒ developer and user documentation
⇒ unit testing, code formatters, static analyzers used before code checkins

Consistent and integrated design
⇒ developers, users, tests use same interfaces
⇒ implement capabilities as library functions with command line, user, and test interfaces, etc.
⇒ consistent code formatting (black), static analyzers (flake8)

9



Alegra tooling modernizations
Requirements
Reduce technical debt: use outside tools to do what they do well

⇒ Spack for dependency management
⇒ CMake for alegranevada build system
⇒ vvtest with “scripting” interface for testing
⇒ git for version control

Protect UCNI, ITAR, and other proprietary data
⇒ separate git repositories with access controls for sensitive components
⇒ separate components brought in through git submodules
⇒ “opt in” instead of “opt out”

Be as future “proof” as possible
⇒ Python3.6+
⇒ developer and user documentation
⇒ unit testing, code formatters, static analyzers used before code checkins

Consistent and integrated design
⇒ developers, users, tests use same interfaces
⇒ implement capabilities as library functions with command line, user, and test interfaces, etc.
⇒ consistent code formatting (black), static analyzers (flake8)

9



Alegra tooling modernizations
toolset2

toolset2

bin etc lib opt share var

nevada

defaults

spack

nevada

external nevada

command contrib test util

scidev spack nevada

admin qa

nevada

spack

repo environments

layout borrows from Spack and the Linux filesystem hierarchy standard (FHS)
toolset2 code written entirely in Python 3.6+
extensive (and growing) documentation

10



Alegra tooling modernizations
toolset2

toolset2

bin etc lib opt share var

bin directory contains executable scripts
the bin/nevada script is the main entry point to toolset2
nevada has many subcommands that run, build, and interact with Alegra
(and friends)

11



Alegra tooling modernizations
toolset2

toolset2

bin etc lib opt share var

nevada

defaults

the etc/nevada/defaults contains default configurations for toolset2 12



Alegra tooling modernizations
toolset2

toolset2

bin etc lib opt share var

nevada

external nevada

command contrib test util

the lib directory contains most python library code
lib/nevada/external are vendored libraries
lib/nevada/nevada/command has the implementations of the subcommands called by nevada
lib/nevada/nevada/contrib are library functions that run and control Alegra and friends
lib/nevada/nevada/test are internal toolset2 tests
lib/nevada/nevada/util are general utilities

13



Alegra tooling modernizations
toolset2

toolset2

bin etc lib opt share var

scidev spack

the opt directory contains necessary external software that is actively
developed
Spack for build management
Scidev for Alegra integration testing
Spack and Scidev are included in toolset2 as submodules

14



Alegra tooling modernizations
toolset2

toolset2

bin etc lib opt share var

nevada

admin qa

the share directory contains other executables and data
share/nevada/qa contains toolset2 QA scripts
share/nevada/admin contains code used for administrative purposes
(creating releases, distributions, etc.)

15



Alegra tooling modernizations
toolset2

toolset2

bin etc lib opt share var

nevada

spack

repo environmentsthe var directory contains variable data
var/nevada/spack/environments contains pre‐configured Spack
environments for supported machines
var/nevada/spack/repo contains the “spackages” for Alegra and its TPLs
Even though we don’t want to build and manage the TPLs ourselves, we
want to control build options (through the spackage) 16



Alegra tooling modernizations
git version control

Transitioned from svn version control to git
Latest version of alegranevada copied from teamforge.sandia.gov and
distributed as shown in cee-gitlab.sandia.gov/alegra/source-code

cee-gitlab.sandia.gov/alegra/source-code

nevada

alegra-hedp

test-nodist

alegra extnevada

alegratestalegra-hedp test

Alegra‐HEDP is a git submodule of
alegranevada
sensitive HEDP data maintained
with strict access controls
tests distributed with source

17

teamforge.sandia.gov
cee-gitlab.sandia.gov/alegra/source-code


Alegra tooling modernizations
Spack integration

Spack chosen for dependency and build management

What is spack?
a package manager under active development at LLNL
think rpm, brew, port etc
designed from the ground up for building software in a scientific computing
environment

Why spack?
actively developed and funded
Spack team has expertise in compilers/mpi/architectures etc.
Spack works closely with DOE to target software for upcoming machines
enables easier transition from our copies of TPLs to their externally developed
and supported versions

18



Alegra tooling modernizations
Spack integration

Spack is included as a git submodule and wrapped with the nevada script
including as a submodule guarantees our users/developers are using the right
version of Spack
wrapping Spack allows us to

isolate toolset2’s version of Spack from the user’s
provide non‐default Spack settings in a transparent way

Example: install alegra (and its dependencies) on a ceelan machine

$ nevada config set config:spack_env:cee-rhel7-gcc4.9.2-openmpi1.8.3
$ nevada spack install alegranevada@master ~alegra-hedp

And on macOS

$ nevada config set config:spack_env:darwin-gcc8.3.0-openmpi3.1.3
$ nevada spack install alegranevada@master ~alegra-hedp

19



Alegra tooling modernizations
TPL management

Alegra group still maintains many TPLs
each TPL was moved from the original svn repository to its own git repository
TPLs having sensitive data were further separated to control access, for
example, the Lambda TPL
⇒ was separated into source, SNL proprietary data, LANL proprietary data, each with

its own repository

“spackage“ for each TPL written that allows Spack to build the TPL to our specs
when TPL is upgraded, its spackage will be changed to point to the native
upstream source, so that we transition away from maintaining our own copies
⇒ Trilinos, DiomSpy, Boost, netCDF, hdf5, SEACAS, and Dakota are all now fetched

from their host repositories

Example: install TPL Dakota on the ceelan

$ nevada config set config:spack_env:cee-rhel7-gcc4.9.2-openmpi1.8.3
$ nevada spack install dakota

20



Alegra tooling modernizations
Build system

Build system transitioned from homegrown xml+Makefile system to CMake
CMake is an industry standard
leverage CMake’s expertise in building to specific targets/platforms
requires CMake > 3.13

21



Example usage

22



Example usage
Developer workflow

$ git clone --recursive git@cee-gitlab.sandia.gov:alegra/source-code/alegranevada
$ nevada spack develop -p `pwd`/alegranevada alegranevada@master
$ nevada spack install alegranevada@master

nevada spack develop marks the package as in development
Invocations of nevada spack install for development packages build the
local source

23



Example usage
Developer workflow: integration testing

$ nevada config set config:build_config:BUILD_CONFIG_PATH
$ nevada vvtest [options] +builtin
$ # check for broken tests

A simple test file

#VVT: keywords : fast 2D
#VVT: parameterize (autotype) : np = 1 4
import vvtest_util as vvt
from seacas import exo_diff
from nevada.contrib import alegra

def test():
alegra(vvt.NAME, dimension=3, nproc=vvt.np, preprocess="aprepro")
exo_diff(f"{vvt.NAME}.base_exo", f"{vvt.NAME}.exo", f"{vvt.NAME}.exodiff")

if __name__ == "__main__":
import sys

sys.exit(test()) 24



Example usage
Developer workflow: committing code

$ nevada vvtest +builtin
$ # check for broken tests
$ git add ...
$ git commit -m ...
$ git push origin <branch name>

Developers run the “builtin” integration tests
Developers are responsible for making sure to run the tests and that they pass
Developers push to feature branch and open merge request
Merge requests must pass pre‐defined GitLab pipelines before merging

25



Example usage
Analyst workflow

$ ls
runid.inp runid.py

runid.inp is the user’s normal Alegra input file and can be run in the normal way:

$ nevada run-alegra --preprocess=aprepro --nproc=4 runid

Under the hood, nevada run-alegra processes the command line arguments and
calls nevada.contrib.alegra.

26



Example usage
Analyst workflow

Alternatively, the user can run a Python script, such as the following

from nevada.contrib import alegra
def main():

alegra("runid", nproc=4, preprocess="aprepro")

if __name__ == "__main__":
main()

Use the nevada python command to execute the script:

$ nevada python runid.py

An advantage of this method over running the input file directly is that the python
script can contain any other pre and post processing steps, in a single location.

There is only one way of calling Alegra ‐ and it is exercised in the test, cli, and
script interface identically!

27



Example usage
Analyst workflow

Alternatively, the user can run a Python script, such as the following

from nevada.contrib import alegra
def main():

alegra("runid", nproc=4, preprocess="aprepro")

if __name__ == "__main__":
main()

Use the nevada python command to execute the script:

$ nevada python runid.py

An advantage of this method over running the input file directly is that the python
script can contain any other pre and post processing steps, in a single location.

There is only one way of calling Alegra ‐ and it is exercised in the test, cli, and
script interface identically!

27



Continuous Integration

28



Continuous Integration
Developer Workflow
SVN Commit Policy

Developers responsible for running
tests
Developers solicited code review
Developers have unlimited commit
privileges to SVN repository

⇒ Enforced by verbal honor system

GIT Merge Request Policy
Developer opens merge request
Merge request cannot be merged
until

Merge request is approved by
another developer
GitLab pipelines pass

Developers do not have push access
to master branch

Developer Work

Merge Request

GitLab Runner

Toolset2

Spack vvtest CDash

29


	Alegra
	Alegra tooling modernizations
	Example usage
	Continuous Integration
	Conclusion

