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What’s Will This Talk Cover?

• Field Programmable Gate Arrays (FPGAs) are software-configurable circuits. 

• Common apps: embedded computing, video processing, telecommunications, radar and crypto.

• Traditionally, FPGAs were programmed at a very low level (System Verilog anyone?).

• oneAPI is Intel’s SYCL-based write-once / run-anywhere* approach for CPUs/GPUs/FPGAs.

• Question: oneAPI makes FPGAs accessible to HPC developers.  But is it worth it?

• We’ll answer that question looking at a modified version of the HPCG Benchmark.

* SYCL primarily supports Intel hardware (via oneAPI), but backends for HIP, CUDA and Xilinx FPGAs are under development. 

Image from: https://www.intel.com/content/www/us/en/products/details/fpga/platforms/pac/d5005.html



parallel_for vs. single_task

• To get single_task to work as advertised you need compiler hints! 

• Either [[intel::ivdep]] on the loop or [[intel::kernel_restrict_args]] on the single_task itself.

• Example for small BLAS-1 style kernels: Cost per kernel for vector size 100 

• NOTE: Not all kernels lend themselves to parallel_for / ivdep… 
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Performance Implications of Lack of Write Caching

• Smoothers:  Chebyshev can be parallel_for.  SGS has loop-carried dependencies.

• SPMV-T: Explicit has random access reads.  Implicit has random access read/writes.

• Takeaway #1: Loop-carried dependency inhibits pipelining.

• Takeaway #2: Random access read/writes inhibit pipelining.
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Resource Reduction w/ Load-Store Unit Options

• LUsolve is 0.4% of total time on CPU Laplace2D run.

• Laplace2D Tests

• How much slower is the uncached LUSolve?

• Conclusion: Uncached LSUs have a negligible performance impact for real resource savings.

ALUT = Adaptive Lookup Tables

REG = Registers

MLAB = Memory Local Array Blocks

RAM = Memory

DSP = Digital Signal Processor Blocks

Kernel Mean Stdev

Default LUSolve 4250 us 11 us

Uncached LUSolve 4350 us 8 us
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CPU vs. FPGA Bake-off

Time per multigrid preconditioned CG solve

Laplace2D Brick3D

oneAPI-1 1,430 us 8,504 us

oneAPI-18 1,906 us 3,006 us

FPGA 7,760 us 600,000 us

Power/Energy for HPCG run on Laplace2D

Energy Peak Power

oneAPI-1 134 J 165W / 198W

oneAPI-18 272 J 165W / 198W

FPGA 853 J 67 W

FPGAs take 4x to 70x longer than 
oneAPI on CPU.

Laplace2D: 5pt stencil, 10k unknowns.    Brick3D: 27pt stencil, 64k unknowns

CPU energy via RAPL, power is TDP/PL2.

FPGA board power via OPAE.

Takeaway #1: Long runtimes swamp lower 
power.

Takeaway #2: Lots of optimization left to do!



Lessons Learned & Future Directions

• FPGAs via oneAPI are substantially easier to program than System Verilog, but…

• Programming bottlenecks (e.g. reductions, compiler directives for single_task)

• Launch/wait latency, host/device transfer too expensive.

• Lack of write caching hurts.

• Lack of 64-bit atomics forces us back to less-performant single_task w/o directives.

• Where we want to go

• Kernel replication (data parallelism) to use all of the memory bandwidth.

• Comparing HBM vs. DDR for on-board memory.

• Pipelining between kernels to reduce memory access costs (not easy).

• FPGA/MPI interaction, both via the PCIe bus and on-board NICs.


