
P R E S E N T E D B Y

Sandia National Laboratories is a multimission
laboratory managed and operated by National

Technology and Engineering Solutions of Sandia
LLC, a wholly owned subsidiary of Honeywell
International Inc. for the U.S. Department of

Energy’s National Nuclear Security Administration
under contract DE-NA0003525.

MultiGrid on FPGA Using
Data Parallel C++

Chr i s t o ph e r S i e f e r t , S t ephen Ol iv i e r , Gwendolyn
Vosku i l en and Je f fe r y Young

SAND2022-XXXX C

SAND2022-7054CThis paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in
the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

What’s Will This Talk Cover?

• Field Programmable Gate Arrays (FPGAs) are software-configurable circuits.

• Common apps: embedded computing, video processing, telecommunications, radar and crypto.

• Traditionally, FPGAs were programmed at a very low level (System Verilog anyone?).

• oneAPI is Intel’s SYCL-based write-once / run-anywhere* approach for CPUs/GPUs/FPGAs.

• Question: oneAPI makes FPGAs accessible to HPC developers. But is it worth it?

• We’ll answer that question looking at a modified version of the HPCG Benchmark.

* SYCL primarily supports Intel hardware (via oneAPI), but backends for HIP, CUDA and Xilinx FPGAs are under development.

Image from: https://www.intel.com/content/www/us/en/products/details/fpga/platforms/pac/d5005.html

parallel_for vs. single_task

• To get single_task to work as advertised you need compiler hints!

• Either [[intel::ivdep]] on the loop or [[intel::kernel_restrict_args]] on the single_task itself.

• Example for small BLAS-1 style kernels: Cost per kernel for vector size 100

• NOTE: Not all kernels lend themselves to parallel_for / ivdep…

0

50

100

150

DAXPY DCOPY

Ti
m

e
(u

s)

parallel_for single_task single_task w/ ivdep

Lower = Better

Performance Implications of Lack of Write Caching

• Smoothers: Chebyshev can be parallel_for. SGS has loop-carried dependencies.

• SPMV-T: Explicit has random access reads. Implicit has random access read/writes.

• Takeaway #1: Loop-carried dependency inhibits pipelining.

• Takeaway #2: Random access read/writes inhibit pipelining.

100

1000

10000

100000

Chebyshev Symmetric
Gauss-Seidel

SPMV-T Explicit SPMV-T Implicit

Ti
m

e
(u

s)

Smoothers SPMV-T

Lower = Better

Log Scale

Resource Reduction w/ Load-Store Unit Options

• LUsolve is 0.4% of total time on CPU Laplace2D run.

• Laplace2D Tests

• How much slower is the uncached LUSolve?

• Conclusion: Uncached LSUs have a negligible performance impact for real resource savings.

ALUT = Adaptive Lookup Tables

REG = Registers

MLAB = Memory Local Array Blocks

RAM = Memory

DSP = Digital Signal Processor Blocks

Kernel Mean Stdev

Default LUSolve 4250 us 11 us

Uncached LUSolve 4350 us 8 us

0

10

20

30

40

50

ALUT REG MLAB RAM DSP
Pe

rc
en

t
o

f
To

ta
l

Default LUSolve Uncached LUSolve

Lower = Better

CPU vs. FPGA Bake-off

Time per multigrid preconditioned CG solve

Laplace2D Brick3D

oneAPI-1 1,430 us 8,504 us

oneAPI-18 1,906 us 3,006 us

FPGA 7,760 us 600,000 us

Power/Energy for HPCG run on Laplace2D

Energy Peak Power

oneAPI-1 134 J 165W / 198W

oneAPI-18 272 J 165W / 198W

FPGA 853 J 67 W

FPGAs take 4x to 70x longer than
oneAPI on CPU.

Laplace2D: 5pt stencil, 10k unknowns. Brick3D: 27pt stencil, 64k unknowns

CPU energy via RAPL, power is TDP/PL2.

FPGA board power via OPAE.

Takeaway #1: Long runtimes swamp lower
power.

Takeaway #2: Lots of optimization left to do!

Lessons Learned & Future Directions

• FPGAs via oneAPI are substantially easier to program than System Verilog, but…

• Programming bottlenecks (e.g. reductions, compiler directives for single_task)

• Launch/wait latency, host/device transfer too expensive.

• Lack of write caching hurts.

• Lack of 64-bit atomics forces us back to less-performant single_task w/o directives.

• Where we want to go

• Kernel replication (data parallelism) to use all of the memory bandwidth.

• Comparing HBM vs. DDR for on-board memory.

• Pipelining between kernels to reduce memory access costs (not easy).

• FPGA/MPI interaction, both via the PCIe bus and on-board NICs.

