
Sandia National Laboratories is a multimission
laboratory managed and operated by National

Technology and Engineering Solutions of Sandia
LLC, a wholly owned subsidiary of Honeywell
International Inc. for the U.S. Department
of Energy’s National Nuclear Security Ad-

ministration under contract DE-NA0003525.
SAND NO. XXXX

Functional First

Engineering a Research code in the OCaml Language

Presented by:

Kirk Landin

May 25, 2022
1

SAND2022-7037CThis paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in
the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.



I Have a Dream. . .

Programming C++, I dreamed of a language that would make my life easier:

Sound typing & better type inference
No nasty template errors
Better support for functional programming style
Simple
Very fast
Doesn’t crash

2



Dream Come True?

Spoiler: nobody’s dream language actually exists :-P
A few years ago, we launched a research code using the OCaml language [1]
Of all languages I have used, OCaml comes closest to this dream language.
OCaml was great for developing this research code
This talk relays some of my experience

3



The OCaml Language

Functional-First language: FP concepts (immutability, function composition,
algebraic data types, etc. [2]) are the core programming model
ML family, cousin of the Haskell language [3]
High-performance, statically-typed, machine-compiled
Automatic memory management, garbage-collected
Compact, UNIX-y
State-of-the-art functional features AND sits close to the metal

4



This Research Code

For performing automated software analysis
Focused on two exemplar problems to build a framework that is easy to extend
Implements Abstract Interpretation [4]
10-15k LOC

5



Why We Chose OCaml

Long track record of success for compiler-style analyses
Availability of software analysis libraries
Functional-first Language
Smaller learning curve than Haskell
Very transparent compilation model
“Sweet spot” in language design space:

Very expressive
Strongly typed with automatic type-inference
Compact and close-to-metal

6



Reasons not to Choose OCaml

Unfamiliar to most people
Small community & library ecosystem

Jane Street Capital [5] trying to fix this
Sub-optimal Windows support
Syntax could be better
Lack of multiprocessor support (remedied in OCaml 5.0 [6])
Other idiosyncrasies (true of any language)

7



Project Characteristics

Code would constantly change direction
Good abstractions one week, next week research headed in a direction that broke them
Messy Code!

Despite the churn, we always made steady progress.

Research Software Engineering
Build a software system with little to no clue about what the finished product will
do
Flexibility is king!

8



Why was this Successful?

My Hypothesis: OCaml provides two important things:

1. Immutability
2. Type-system that serves as a high-level modeling language

9



Immutability

“Mutable state is the GOTO statement of the 21st Century”
Immutability makes referentially-transparent abstractions
Behavioral complexity of and immutable component → at least an order of
magnitude smaller than a comparable mutable component
Encapsulation and synchronization → make small amounts of mutable state behave
as if immutable
Restricts us to a reasonably well-behaved software regime, even when
programming blind

10



Modeling Domain Concepts as Algebraic Data Types

Express types exactly
type part = ...
type screw = ...
type nail = ...

type build_step =
| Do_weld of part * part
| Do_screw of screw * part
| Do_rivet of Part * Part
| Do_nail of nail * part

Partial knowledge or polymorphic types → free
type variables
type ('part, 'screw, 'nail) build_step =

| Do_weld of 'part * 'part
| Do_screw of 'screw * 'part
| Do_rivet of 'part * 'part
| Do_nail of 'nail * 'part

11



With Types, Some Computations Write Themselves

type system_state = ...
run_step : build_step -> system_state -> system_state
type batch = build_step list

How do we run batch of steps?
let run_batch batch state = ???

Type should be: batch -> system_state -> system_state
Can program at the type level to figure things out
Hint: use a standard function

foldl : ('a -> 'b -> 'a) -> 'a -> 'b list -> 'a

12



With Types, Some Computations Write Themselves

Type info
type system_state = ...
run_step : build_step -> system_state -> system_state
type batch = build_step list
foldl : ('a -> 'b -> 'a) -> 'a -> 'b list -> 'a

Just assemble the types to get the desired operation
let run_batch batch state = foldl

(fun st step -> run_step step st)
state batch

13



Type-Checker Automatically Generates Models for Functions

let run_block block state = foldl
(fun st instr -> run_instr instr st)
state block

The compiler automatically deduces that its type is

batch -> system_state -> system_state

14



These Models Compose

Pure functions are free of side-effects
Can soundly compose A -> B with B -> C to get A -> C without worrying about
“extra behavior”

Model composability is extremely important

15



Types Let us Index our Knowledge

Current domain knowledge is all labeled with appropriate types

With my current knowledge, can I derive B from A?
Try to compose existing functions to build type A -> B
If impossible:

Which sub-steps, C -> D, were missing?
Work to develop these sub-steps

Reason about the problem at high level of abstraction
Refactoring → Reason at type level. Compact representation of the system

16



Large-Scale Code Design with Immutable “Objects”

OCaml language has Modules [7], which serve a similar role to classes
Modules are essentially immutable classes/objects:

Constructor sets instance data, objects immutable after construction
Methods can reference an object’s immutable instance data
Everything is pure/immutable

“Immutable objects” approach works in almost any language

17



On-boarding/Mentoring People

Biggest challenge when programming non-mainstream languages
Success with one-on-one pair-programming

Work as two-person team: “Student” and “Teacher”
After awhile “Student” can work independently
Some of my “Students” went on to have their own “Students”

Pair-programming approach also applicable to codes in mainstream languages

18



On-boarding/Mentoring People

Two experienced functional programmers on team. Everyone else inexperienced
Foreign language syndrome: affects some people more than others
Would the project keep thriving if the experts left?

19



Pitch: Use C & OCaml in the Scientific Stack

Clear separation of concerns Low-level: (C) vs High-level (OCaml)
Do in C: optimized inner-loops & CUDA kernels

small percentage of total code
Very explicit about low-level tasks → understandable code
Doesn’t seduce developer into building unsound abstractions

Do in OCaml: Full system design, interfaces, refactoring, evolution
large percentage of total code
Automatic memory management
Automatic type inference & sound abstractions → understandable, productive, and
agile
Still a very fast language

Linking OCaml & C/C++ objects straightforward

20



Pitch: Use C & OCaml in the Scientific Stack

My experience: way more productive in OCaml than in C++
Major downside of C++: tries to mix BOTH low-level and high-level

Objects tend to hide “magic code”, hard to understand/modify a system
Duck-typing because sound typing is impractical for C++ semantics
Unsound abstractions: component interfaces say they should work together but cause
template errors/program crashes
Seduces developer into building unsound abstractions

No single language to rule them all

21



References

[1] “Welcome to a world of OCaml.” Available: https://ocaml.org/

[2] “Functional programming.” Available: https://en.wikipedia.org/wiki/Functional
_programming

[3] “Haskell.” Available: https://www.haskell.org/

[4] “Abstract interpretation.” Available: https://en.wikipedia.org/wiki/Abstract_int
erpretation

[5] “Jane street capital.” Available: https://www.janestreet.com/

[6] “The road to OCaml 5.0.” Available: https://discuss.ocaml.org/t/the-road-to-
ocaml-5-0/8584

[7] “Chapter 2 the module system.” Available: https://v2.ocaml.org/manual/module
examples.html

22

https://ocaml.org/
https://en.wikipedia.org/wiki/Functional_programming
https://en.wikipedia.org/wiki/Functional_programming
https://www.haskell.org/
https://en.wikipedia.org/wiki/Abstract_interpretation
https://en.wikipedia.org/wiki/Abstract_interpretation
https://www.janestreet.com/
https://discuss.ocaml.org/t/the-road-to-ocaml-5-0/8584
https://discuss.ocaml.org/t/the-road-to-ocaml-5-0/8584
https://v2.ocaml.org/manual/moduleexamples.html
https://v2.ocaml.org/manual/moduleexamples.html

