This paper describes obijective technical results and analysis. Any subjective views or opinions that might belexpressed)in-7037C
the paper do not necessarily represent the views of the U.S. Department of Energy or;the United States Government.

Functional First

Engineering a Research code in the OCaml Language

Presented by:

Kirk Landin

@cenErsy [V

Sandia National Laboratories is a multimission
Iaboratory managed and operated by National
Technology and Engineering Solutions of Sandia
LLC, a wholly owned subsidiary of Honeywell

dia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions/of Sandia,:LLC ia.wholly;'ow

| Have a Dream. ..

Programming C++, | dreamed of a language that would make my life easier:

m Sound typing & better type inference

m No nasty template errors

m Better support for functional programming style
m Simple

m Very fast

m Doesn’t crash

Dream Come True?

m Spoiler: nobody's dream language actually exists :-P

m A few years ago, we launched a research code using the OCaml language [1]
m Of all languages | have used, OCaml comes closest to this dream language.
m OCaml was great for developing this research code

m This talk relays some of my experience

The OCaml Language

m Functional-First language: FP concepts (immutability, function composition,
algebraic data types, etc. [2]) are the core programming model

m ML family, cousin of the Haskell language [3]

m High-performance, statically-typed, machine-compiled

m Automatic memory management, garbage-collected

m Compact, UNIX-y

m State-of-the-art functional features AND sits close to the metal

This Research Code

m For performing automated software analysis

m Focused on two exemplar problems to build a framework that is easy to extend
m Implements Abstract Interpretation [4]

m 10-15k LOC

Why We Chose OCaml

Long track record of success for compiler-style analyses
Availability of software analysis libraries

Functional-first Language

Smaller learning curve than Haskell

Very transparent compilation model

“Sweet spot” in language design space:
m Very expressive
m Strongly typed with automatic type-inference
m Compact and close-to-metal

Reasons not to Choose OCaml

Unfamiliar to most people
Small community & library ecosystem
m Jane Street Capital [5] trying to fix this
Sub-optimal Windows support
Syntax could be better
Lack of multiprocessor support (remedied in OCaml 5.0 [6])
Other idiosyncrasies (true of any language)

Project Characteristics

m Code would constantly change direction
m Good abstractions one week, next week research headed in a direction that broke them
m Messy Code!

m Despite the churn, we always made steady progress.

Research Software Engineering

m Build a software system with little to no clue about what the finished product will
do
m Flexibility is king!

Why was this Successful?

My Hypothesis: OCaml provides two important things:

1. Immutability
2. Type-system that serves as a high-level modeling language

10

Immutability

“Mutable state is the GOTO statement of the 21st Century”

Immutability makes referentially-transparent abstractions

Behavioral complexity of and immutable component — at least an order of
magnitude smaller than a comparable mutable component

Encapsulation and synchronization — make small amounts of mutable state behave
as if immutable

Restricts us to a reasonably well-behaved software regime, even when
programming blind

11

Modeling Domain Concepts as Algebraic Data Types

Express types exactly

Partial knowledge or polymorphic types — free
type variables

type part = ...
type screw = ... type ('part, 'screw, 'nail) build_step =
type nail = ... | Do_weld of 'part * 'part
| Do_screw of 'screw * 'part
type build_step = | Do_rivet of 'part * 'part
| Do_weld of part * part | Do_nail of 'mail * 'part

| Do_screw of screw * part
| Do_rivet of Part * Part
| Do_nail of nail * part

12

With Types, Some Computations Write Themselves

type system_state = ...
run_step : build_step —> system_state -> system_state
type batch = build_step list

How do we run batch of steps?

let run_batch batch state = 777

m Type should be: batch -> system_state -> system_state
m Can program at the type level to figure things out
m Hint: use a standard function

foldl : ('a -> 'b -> 'a) -> 'a -> 'b list -> 'a

13

With Types, Some Computations Write Themselves

Type info

type system_state = ...

run_step : build_step —> system_state -> system_state
type batch = build_step list

foldl : ('a -=> 'b -> 'a) -> 'a -> 'b list -> 'a

Just assemble the types to get the desired operation

let run_batch batch state = foldl
(fun st step -> run_step step st)
state batch

Type-Checker Automatically Generates Models for Functions

let run_block block state = foldl
(fun st instr -> run_instr instr st)
state block

The compiler automatically deduces that its type is

batch -> system_state -> system_state

14

15

These Models Compose

m Pure functions are free of side-effects
m Can soundly compose A -> B with B -> C to get A -> C without worrying about
“extra behavior”

m Model composability is extremely important

16

Types Let us Index our Knowledge

Current domain knowledge is all labeled with appropriate types

With my current knowledge, can | derive B from A?

m Try to compose existing functions to build type A -> B

m If impossible:
m Which sub-steps, C -> D, were missing?
m Work to develop these sub-steps

m Reason about the problem at high level of abstraction
m Refactoring — Reason at type level. Compact representation of the system

17

Large-Scale Code Design with Immutable “Objects”

m OCaml language has Modules [7], which serve a similar role to classes
m Modules are essentially immutable classes/objects:

m Constructor sets instance data, objects immutable after construction

m Methods can reference an object’s immutable instance data

m Everything is pure/immutable
m “Immutable objects” approach works in almost any language

18

On-boarding/Mentoring People

m Biggest challenge when programming non-mainstream languages
m Success with one-on-one pair-programming

m Work as two-person team: “Student” and “Teacher”

m After awhile “Student” can work independently

m Some of my “Students” went on to have their own “Students”

m Pair-programming approach also applicable to codes in mainstream languages

10

On-boarding/Mentoring People

m Two experienced functional programmers on team. Everyone else inexperienced
m Foreign language syndrome: affects some people more than others
m Would the project keep thriving if the experts left?

20

Pitch: Use C & OCaml in the Scientific Stack

m Clear separation of concerns Low-level: (C) vs High-level (OCaml)
m Do in C: optimized inner-loops & CUDA kernels
m small percentage of total code
m Very explicit about low-level tasks — understandable code
m Doesn’t seduce developer into building unsound abstractions
m Do in OCaml: Full system design, interfaces, refactoring, evolution
m large percentage of total code
m Automatic memory management
m Automatic type inference & sound abstractions — understandable, productive, and
agile
m Still a very fast language
m Linking OCaml & C/C++ objects straightforward

21

Pitch: Use C & OCaml in the Scientific Stack

m My experience: way more productive in OCaml than in C++

m Major downside of C4++: tries to mix BOTH low-level and high-level
m Objects tend to hide “magic code”, hard to understand/modify a system
m Duck-typing because sound typing is impractical for C++ semantics

m Unsound abstractions: component interfaces say they should work together but cause
template errors/program crashes

m Seduces developer into building unsound abstractions
m No single language to rule them all

29

References

[1]
[2]
8]
[4]
[5]
[6]
[7]

“Welcome to a world of OCaml.” Available: https://ocaml.org/

“Functional programming.” Available: https://en.wikipedia.org/wiki/Functional
__programming

“Haskell.” Available: https://www.haskell.org/

“Abstract interpretation.” Available: https://en.wikipedia.org/wiki/Abstract_int
erpretation

“Jane street capital.” Available: https://www.janestreet.com/

“The road to OCaml 5.0." Available: https://discuss.ocaml.org/t/the-road-to-
ocaml-5-0/8584

“Chapter 2 the module system.” Available: https://v2.ocaml.org/manual/module
examples.html

https://ocaml.org/
https://en.wikipedia.org/wiki/Functional_programming
https://en.wikipedia.org/wiki/Functional_programming
https://www.haskell.org/
https://en.wikipedia.org/wiki/Abstract_interpretation
https://en.wikipedia.org/wiki/Abstract_interpretation
https://www.janestreet.com/
https://discuss.ocaml.org/t/the-road-to-ocaml-5-0/8584
https://discuss.ocaml.org/t/the-road-to-ocaml-5-0/8584
https://v2.ocaml.org/manual/moduleexamples.html
https://v2.ocaml.org/manual/moduleexamples.html

