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I Have a Dream. . .

Programming C++, I dreamed of a language that would make my life easier:

Sound typing & better type inference
No nasty template errors
Better support for functional programming style
Simple
Very fast
Doesn’t crash
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Dream Come True?

Spoiler: nobody’s dream language actually exists :-P
A few years ago, we launched a research code using the OCaml language [1]
Of all languages I have used, OCaml comes closest to this dream language.
OCaml was great for developing this research code
This talk relays some of my experience

3



The OCaml Language

Functional-First language: FP concepts (immutability, function composition,
algebraic data types, etc. [2]) are the core programming model
ML family, cousin of the Haskell language [3]
High-performance, statically-typed, machine-compiled
Automatic memory management, garbage-collected
Compact, UNIX-y
State-of-the-art functional features AND sits close to the metal
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This Research Code

For performing automated software analysis
Focused on two exemplar problems to build a framework that is easy to extend
Implements Abstract Interpretation [4]
10-15k LOC
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Why We Chose OCaml

Long track record of success for compiler-style analyses
Availability of software analysis libraries
Functional-first Language
Smaller learning curve than Haskell
Very transparent compilation model
“Sweet spot” in language design space:

Very expressive
Strongly typed with automatic type-inference
Compact and close-to-metal
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Reasons not to Choose OCaml

Unfamiliar to most people
Small community & library ecosystem

Jane Street Capital [5] trying to fix this
Sub-optimal Windows support
Syntax could be better
Lack of multiprocessor support (remedied in OCaml 5.0 [6])
Other idiosyncrasies (true of any language)
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Project Characteristics

Code would constantly change direction
Good abstractions one week, next week research headed in a direction that broke them
Messy Code!

Despite the churn, we always made steady progress.

Research Software Engineering
Build a software system with little to no clue about what the finished product will
do
Flexibility is king!
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Why was this Successful?

My Hypothesis: OCaml provides two important things:

1. Immutability
2. Type-system that serves as a high-level modeling language
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Immutability

“Mutable state is the GOTO statement of the 21st Century”
Immutability makes referentially-transparent abstractions
Behavioral complexity of and immutable component → at least an order of
magnitude smaller than a comparable mutable component
Encapsulation and synchronization → make small amounts of mutable state behave
as if immutable
Restricts us to a reasonably well-behaved software regime, even when
programming blind
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Modeling Domain Concepts as Algebraic Data Types

Express types exactly
type part = ...
type screw = ...
type nail = ...

type build_step =
| Do_weld of part * part
| Do_screw of screw * part
| Do_rivet of Part * Part
| Do_nail of nail * part

Partial knowledge or polymorphic types → free
type variables
type ('part, 'screw, 'nail) build_step =

| Do_weld of 'part * 'part
| Do_screw of 'screw * 'part
| Do_rivet of 'part * 'part
| Do_nail of 'nail * 'part
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With Types, Some Computations Write Themselves

type system_state = ...
run_step : build_step -> system_state -> system_state
type batch = build_step list

How do we run batch of steps?
let run_batch batch state = ???

Type should be: batch -> system_state -> system_state
Can program at the type level to figure things out
Hint: use a standard function

foldl : ('a -> 'b -> 'a) -> 'a -> 'b list -> 'a

12



With Types, Some Computations Write Themselves

Type info
type system_state = ...
run_step : build_step -> system_state -> system_state
type batch = build_step list
foldl : ('a -> 'b -> 'a) -> 'a -> 'b list -> 'a

Just assemble the types to get the desired operation
let run_batch batch state = foldl

(fun st step -> run_step step st)
state batch
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Type-Checker Automatically Generates Models for Functions

let run_block block state = foldl
(fun st instr -> run_instr instr st)
state block

The compiler automatically deduces that its type is

batch -> system_state -> system_state
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These Models Compose

Pure functions are free of side-effects
Can soundly compose A -> B with B -> C to get A -> C without worrying about
“extra behavior”

Model composability is extremely important
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Types Let us Index our Knowledge

Current domain knowledge is all labeled with appropriate types

With my current knowledge, can I derive B from A?
Try to compose existing functions to build type A -> B
If impossible:

Which sub-steps, C -> D, were missing?
Work to develop these sub-steps

Reason about the problem at high level of abstraction
Refactoring → Reason at type level. Compact representation of the system
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Large-Scale Code Design with Immutable “Objects”

OCaml language has Modules [7], which serve a similar role to classes
Modules are essentially immutable classes/objects:

Constructor sets instance data, objects immutable after construction
Methods can reference an object’s immutable instance data
Everything is pure/immutable

“Immutable objects” approach works in almost any language
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On-boarding/Mentoring People

Biggest challenge when programming non-mainstream languages
Success with one-on-one pair-programming

Work as two-person team: “Student” and “Teacher”
After awhile “Student” can work independently
Some of my “Students” went on to have their own “Students”

Pair-programming approach also applicable to codes in mainstream languages
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On-boarding/Mentoring People

Two experienced functional programmers on team. Everyone else inexperienced
Foreign language syndrome: affects some people more than others
Would the project keep thriving if the experts left?
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Pitch: Use C & OCaml in the Scientific Stack

Clear separation of concerns Low-level: (C) vs High-level (OCaml)
Do in C: optimized inner-loops & CUDA kernels

small percentage of total code
Very explicit about low-level tasks → understandable code
Doesn’t seduce developer into building unsound abstractions

Do in OCaml: Full system design, interfaces, refactoring, evolution
large percentage of total code
Automatic memory management
Automatic type inference & sound abstractions → understandable, productive, and
agile
Still a very fast language

Linking OCaml & C/C++ objects straightforward
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Pitch: Use C & OCaml in the Scientific Stack

My experience: way more productive in OCaml than in C++
Major downside of C++: tries to mix BOTH low-level and high-level

Objects tend to hide “magic code”, hard to understand/modify a system
Duck-typing because sound typing is impractical for C++ semantics
Unsound abstractions: component interfaces say they should work together but cause
template errors/program crashes
Seduces developer into building unsound abstractions

No single language to rule them all
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