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Optical modulator design

CMOS compatible - integrable with current
surface ion trap fabrication techniques

Fast response times - operate in the ys
timescales of gate times

Low voltage requirements - desire control
limiting to ~10 V

Small form factor - fabricate many
modulators on the same ion trap

Extinction factor - current modulation
techniques set a high standard for full light
extinction
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‘ Cantilevered Mach-Zehnder interferometers
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interference at the output port. A serpentined
waveguide is flexed by a piezo-actuated material.
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Analytical Mach-Zehnder Interferometer Calculations
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For a given input port, A, the splitting ratio is quantified by T,,, where through-port
gets \/T_H of the field, and cross port gets ,/1 — T,,. For even splitting T,, =1/2. Field
after first directional coupler is

B =,T,A C = J1-T,Ae"?

After propagating through their respective arms, the fields arrive at D and E with an

accumulated phase ¢,,
D = Bel®: E = Ce'?:

Recombination at the second uneven directional coupler results in
F = JT,D+J1-T,Ee™? G= JTLE +/1—T,De™/?

The process repeats
H=Fe'¢s I =Ge'¥

J= JToH + J1 = T, 1e'™/? K= JT51 + /1 — T3He'™/?

717 a’ + b* + c* + d* — (ab)2cos(8,) — (ac)2 cos(6, + 6,) — (ad)2cos(6,)

1412~ +(bc)2cos(8,) + (bd)2 cos(8, — 6,) + (¢d)2 cos(6;)




| Experimental results agree with analytic
simulations

Extinction vs thetal, theta2
splitting ratios: [0.4 0.6 0.6 0.4 0.4 0.6]
loss (dB)- [0.259 0.057 0.199 0.101]
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Analytic calculations take into account imperfections of the directional couplers and later |
included nonlinear effects relevant at higher powers. With moderate voltages we can

demonstrate complete change in interference. This simulation proved useful in also

understanding nonlinear effects as we went to higher throughput powers.
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Using custom electronics for switching
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Switching is controlled by a custom mosfet switch where TTL signals from experimental
control allows for a fast double poled switch.

Due to the low throughput of the device, gate times are limited to >10 ys. The noise
appears to be reproducible and would not be a current limitation for testing. |



| Measuring switching performance
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Measuring the pulse area of the switched light . &
through the device to determine amount of noise £
introduced. Standard deviation of pulse area is less
than 1% and may be dominated by technical noise
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Light delivery to a trapped ion

We are able to perform state preparation
and Rabi flopping with only the MZI acting

as the modulator on a 4°Ca* ion. Note that

a AOM is used to scan for the qubit
transition but is not used for extinction
during device characterization.
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Trapped ions measuring extinction ratio
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The ion allows for an accurate measurement of the leakage
light from the off position (destructive interference) allows for a
fine-tuning of the voltage control and has shown an extinction
ratio > 38 dB.
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0 | Gate Set Tomography - Experimental Results
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Neilsen, E. et al. Gate Set Tomography. Quantum 5, 557 (2021)

Gate Entanglement Infidelity 1/2 Trace Distance
[] 0.003834 0.01406
Gxp12:0 0.001899 0.034446
Gyp12:0 0.002016 0.034076

Measured a gate fidelity of >99.8%
using GST performed using only the
MZI as the amplitude control

There is further optimization to
explore but this compares favorably to
GST results performed with a AOM
based set up




Questions?
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KIside

Calculating Normalized Power for one output port
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a’? + b% + c? + d? — (ab)2 cos(6,) — (ac)2 cos(6, + 6,) — (ad)2cos(6,)
+(bc)2cos(6;) + (bd)2 cos(8; — 6,) + (cd)2 cos(H,)
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