SAND2022-7044C

This paper describes objective technical results and analysis. Any subijective views or opinions that mightlbelexpressed}in|
the paper do not necessarily represent the views of the U.S. Department of Energy or the United States'Government.

Sandia
National
Laboratories

History of CDE

ASC DevOps Core:

Paul Wolfenbarger
Gary Lawson

_ Scott Warnock
Jonathan Grzybowski

, _ Etone Mbome
Christopher Sullivan
ENERGY NS

Smrem e Inswr

Sandia National Laboratories is a
multimission laboratory managed
and operated by National Technology

2022 Tri-lab Advanced Simulation & Computing AovAnceEnD & Engineering Solutions of Sandia,
Sustainable Scientific Software Conference \T SImMULATION & Honeywell Intermational Inc. fo the

May 25t

U.S. Department of Energy’s National

m
Albuguerque, NM, USA COMPUTING™ e seary paninetsionuner

SolutionsfofiSandia, LLC,lalwhollyiowned:
subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administrationfundercontract DE-NA0003525.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering

> | Introduction - What is ASC DevOps Core @ Sandia?

2
Product Owner: What do we do:

Scott Warnock / \/ Common \

Development
Environment

Code Scan

Scrum Master: Code Vulnerability

Scanning Tool Consistent

Multi-platform

\ J\ Software Stack /
4 N N

Etone Mbome

Development Team:

- Jon Grzybowski D(S);I:\(/airclégd General Support
- Gary Lawson - Hydra
- Chris Sullivan CDash E

Paul Wolfenbarger \ /\ /

s I Introduction - Common Development Environment

- Support ASC Code teams on computing platforms critical to the ASC Mission

RAMSES

Radiation Analysis Modeling and Simulation of
Electrical Systems

- Sandia’s vision for unified development environment across computing platforms
- HPC Clusters (x86_64, power9, aarch64, cuda)
- CEE (Common Engineering Environment) Resources
- Desktops & Workstations
- Containers

. - MPI
- Sustainability
- Will the same approach work in 10 years?

- What is the measure of success? Compilers
- How to minimize technical debt?

Providing exceptional service in the national interest

; | Early days of CDE

Smallest vertical slice
Interviewed an experienced DevOps team « Two platforms:

 Met with SIERRA DevOps & NGS * HPC(CTST) - RHEL7
- CEE -RHEL 6 & 7

« Asked questions on how to promote sustainability
« Manage our technical debt

« Explore new technologies early
« Define interface boundaries

- Two software packages:
« CMake

- Anaconda

Answer fundamental questions:

« How do we measure success?

* How to build software?

« What technology to automate? |

« What about containerization?

« What is the process?

5

How do we measure success?

ASCDO Definition of Done Technical Debt

Monitored Minimize:

At a glance, did the process PASS/FAIL
« Manual processes

Automated

. « Maintained code, scripts, modifications
Every process is automated

« Unbounded influences and one-offs
Tested

Every product is tested as thoroughly as is feasible Identify:

Reviewed * |Interface boundaries

Every process is reviewed for value added - Sources of productivity degradation

Sustainability MATR's to the ASC DevOps Core

s | How do we build software?

-

&

Spack Builds A

Alpha-stage multi-platform
package manager

Designed for HPC
ecosystems
« MPI combinatorics
« Exotic hardware
Linux, Windows, and
MacOS supported

Spack provides the flexibility required to build for the target platforms

7 I What technology do we use to automate?
4

Ansible

« Commercially available
« User-supported

* YAML interface
« Executes on the system
« (Can be integrated into
container
« Requires Python on system
« Supports templating
 Efficient scaling to multiple
platforms
« State-driven resource model

& %

Ansible chosen for state-driven resource model, efficient scaling, and templating capabilties

s | What about containerization?

We initially designed our pipelines to build in a container
« Containers acted as clean rooms which could be discarded after a build

» Buildcache was generated after the build for deployment
* Uploaded to Nexus Repository for reuse

« Deployment on bare-metal from buildcache
* Encountered difficulties with maintaining the buildcache repository and indexes

» Spack often would not/could not install from buildcache because of SHA-1 conflicts |
For now, we are not supporting containerized deployments and builds I
« Executing containers is not yet available for every target platform, i.e. HPC cluster’s |

« @Growing interest in containerized deployments
« We will revisit this in the near future |

9 | Build and Deployment Technologies

i
Ansible |

Gitlab
Python l
Spack
E4S

0o 1 Approach to Software Deployment

= Vertical Slice
= Support one code team
= Support their software stack
= Explore Technologies
= (Create Automated Process

= Build
= Test
= Deploy

« Expand the Slice
« Support additional teams
« Extend software stack
* Improve processes
« Support additional platforms

Influences convergence on a unified stack

| MP1 | | Compilers |

£
s
2
3

Version:
Compiler Version:

—_—

OpenMPI*
Intel

S—

_.
S

Anaconda 3

:

Intel MKL
Intel VTune
METIS
net CDF-C*
Netlib LAPACK
ParMETIS
Parrallel Net CDF*
SuperLU*

CMake

* E4S tested

1300
i GCC10.3 :

P 202112
: GCC10.3 |

2021.4

202171

GCC 103

D

evelopment-to-Deployment Promotion Workflow N

Development Qualification Production Release

Space (Private) Space (Private) Name (i.e. CDE v1, CDE
v2, etc.)

S ® >® >® y

1. Development build is automated, but can require some manual development
« Modify package versions and/or variants

« Build and verify stability with testing

|
1 1 Deployment Promotion Workflow m

2. Once we have a stable build, verify automation can build it cleanly
* No manual intervention

 End-to-end installation without errors or failures

3. Once we can build in automation cleanly I
« Verify we can build weekly
* Build out to qualification space for additional testing I

4. Once the additional testing passes
* Build in production space as a named release I
* Symlink to public module space I

|
> 1 CDE: Current Workflow with Ansible Tower - Dev Space m

| CDE DEPLOY (PROD)

OTHER PROMPTS PREVIEW .
! Build
* SPACK VERSION
e88396e5edf2bb50776985b4db0e358e95ee1df2 | Setup
¢ CPACK ENVIRONMENT FILE | Trlgger) (Spack 'conilguratlun)) Bm!d
| (Ansible Tower) (Licenses) (Spack environment)
]
| (Package.py Repo)

* DEPLOY DIRECTORY

/projects/cde/dev

. *MODULE SLUG
e.g ‘cde/vl, cde/vZ, or ‘cde/dev’

cderdey - Specify target platforms

* CLEAN DEPLOY DIRECTORY

false

- Environment File

* BUILD NAME

| cebuig : - Deploy Directory
* PUBLIC MODULES - Build Name

false -

CANCEL

Workflow is triggered manually in Ansible Tower

- Fill out survey options for automation

s | CDE: Current Workflow with Ansible Tower - Dev Space

Build

Test

Setup

(Ansible Tower)

(Package.py Repo)

Trigger Spack configuration
gg _)(pa(umnsges} }_)

Build
(Spack environment)

Unit Testing

Module Testing

Execute workflow multiple times for staged builds:

1. GCC Compiler

2. Compilers - Intel, LLVM, Cuda, Platform Specific

3. Third-Party Libraries (TPL's)

Workflow executed on each target platform to a unique deployment directory

2 | CDE: Current Workflow with Ansible Tower - Dev Space

Run
Build Test Deploy
. Setwp .
{ An;'i';'lg‘-"’T‘:';ver) — (Spac{kl_ii‘;':g;r}at"’") — (Spack E:J:inment) —t—3p UnitTesting (=J» Module Testing = 3> Deploy to Qual
(Package.py Repo)
Unit Testing Module Testing
« Individual package tests * Availability of the modules
* Smoke and feature tests « Load, Swap, Unload
« Tests provided with packages * Autoload
« CDE developed tests |

With successful testing, promote to qualification space and build weekly

s | CDE: Current Workflow with Ansible Tower - Qual Space @i

Run

Test Deploy

—» UnitTesting —J» Module Testing —J» (Chgf;' ;EGStE"l;‘IEIl‘d A Deploy to Prod

- Can our customers build on our stack?

- Integration testing with Charon & GEMMA
Trilinos as a dependency

]
User Testing |

- If Yes, deploy to production space

With successful testing, promote to production space and link modules publicly

- Limited parallelism
« Spack Pipelines - We currently lack sustainable gitlab runners
« Desire for Jacamar runners as sustainable solution
« Distributed CLI Spack

I
16 | Limitations of the Current Workflow m

« Coupling of Packages to Spack version
- Converging on need to build from Spack develop branch
* Need process to verify builds in order to promote Spack develop branch commit |

« Manual Trigger
* Desire CI/CD workflow on our manifests I

« Limited Testing & Analysis
» Is the MPI we are currently building comparable in performance to prior releases? I
* Do the features the code teams need in software package X work? I

17 | Future Improvements

/Development-to-Deponment Promotion Workflow N
Development Development Qualification Production Release
Space (Private) Space (Public) Space (Private) Name (i.e. CDE v1, CDE

v2, etc.)

[Sme QPR

- Improved parallelism

J

- Public development space for software rolling releases

- Improved automation
- Automate build trigger's for Continuous Integration and Delivery

- Sustainable integration testing
- Improved monitoring and user-statistics I
- Caching builds |
- Generating containers of the CDE software stack

- Provide our tooling for generating builds i

¢ | Conclusions

1.

We strive to provide the ASC Code Teams with the software they require to develop
* And further, the tools they require to develop

« Build caches for rapid deployment of an existing, stable software stack

« Software stack deployment tooling for one-off and experimental builds

We envision a unified environment where the software needed by the code teams
is readily available and with up-to-date versions

We strive to develop and maintain sustainable practices so the desired product is
consistently delivered, no matter how the ecosystem and technology adapt

Providing exceptional service in the national interest

19 | Points-of-Contact

Scott Warnock sawarno@sandia.gov

ASC DevOps Core asc-devops@sandia.gov

mailto:sawarno@sandia.gov
mailto:asc-devops@sandia.gov

