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Introduction – What is ASC DevOps Core @ Sandia?

Product Owner:

- Scott Warnock

Scrum Master:

- Etone Mbome

Development Team:

- Jon Grzybowski

- Gary Lawson

- Chris Sullivan

- Paul Wolfenbarger
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Introduction – Common Development Environment
- Support ASC Code teams on computing platforms critical to the ASC Mission

- Sandia’s vision for unified development environment across computing platforms
- HPC Clusters (x86_64, power9, aarch64, cuda)
- CEE (Common Engineering Environment) Resources
- Desktops & Workstations
- Containers

- Sustainability 
- Will the same approach work in 10 years?
- What is the measure of success?
- How to minimize technical debt?
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Compilers

MPI

TPLs

Providing exceptional service in the national interest



Early days of CDE

Interviewed an experienced DevOps team

• Met with SIERRA DevOps & NGS

• Asked questions on how to promote sustainability
• Manage our technical debt
• Explore new technologies early
• Define interface boundaries
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Smallest vertical slice

• Two platforms: 
• HPC (CTS1)  - RHEL 7
• CEE      - RHEL 6 & 7

• Two software packages:
• CMake
• Anaconda

Answer fundamental questions:

• How do we measure success?

• How to build software?

• What technology to automate?

• What about containerization?

• What is the process?



How do we measure success?

ASCDO Definition of Done

Monitored
At a glance, did the process PASS/FAIL

Automated
Every process is automated

Tested
Every product is tested as thoroughly as is feasible

Reviewed
Every process is reviewed for value added
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Technical Debt

Minimize:

• Manual processes

• Maintained code, scripts, modifications

• Unbounded influences and one-offs

Identify:

• Interface boundaries

• Sources of productivity degradation

Sustainability MATR’s to the ASC DevOps Core



How do we build software?6

RPM Builds

Red Hat Package Manager
Commercially available

• Not designed for HPC 
ecosystems
• MPI combinatorics
• Exotic hardware

• Only works for Linux

Spack Builds

Alpha-stage multi-platform 
package manager

• Designed for HPC 
ecosystems
• MPI combinatorics
• Exotic hardware

• Linux, Windows, and 
MacOS supported

Spack provides the flexibility required to build for the target platforms



What technology do we use to automate?7

Gitlab CI

• Commercially available
• System administrator or user

-supported

• YAML interface
• Multiple execution types

• SSH, Shell, Docker, etc
• Redundancy in scaling to 

multiple platforms
• Supports variables
• Spack supports designing 

Gitlab-CI pipelines*

Ansible

• Commercially available
• User-supported

• YAML interface
• Executes on the system

• Can be integrated into 
container

• Requires Python on system
• Supports templating

• Efficient scaling to multiple 
platforms

• State-driven resource model

Ansible chosen for state-driven resource model, efficient scaling, and templating capabilties



What about containerization?

We initially designed our pipelines to build in a container

• Containers acted as clean rooms which could be discarded after a build

• Buildcache was generated after the build for deployment
• Uploaded to Nexus Repository for reuse

• Deployment on bare-metal from buildcache
• Encountered difficulties with maintaining the buildcache repository and indexes
• Spack often would not/could not install from buildcache because of SHA-1 conflicts

For now, we are not supporting containerized deployments and builds

• Executing containers is not yet available for every target platform, i.e. HPC cluster’s

• Growing interest in containerized deployments
• We will revisit this in the near future
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Build and Deployment Technologies9

Ansible

Gitlab

Python

Spack

E4S



Approach to Software Deployment

 Vertical Slice
 Support one code team
 Support their software stack
 Explore Technologies
 Create Automated Process
 Build
 Test
 Deploy

• Expand the Slice
• Support additional teams
• Extend software stack
• Improve processes
• Support additional platforms
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Influences convergence on a unified stack



Deployment Promotion Workflow

1. Development build is automated, but can require some manual development
• Modify package versions and/or variants
• Build and verify stability with testing

2. Once we have a stable build, verify automation can build it cleanly
• No manual intervention
• End-to-end installation without errors or failures

3. Once we can build in automation cleanly
• Verify we can build weekly
• Build out to qualification space for additional testing

4. Once the additional testing passes
• Build in production space as a named release
• Symlink to public module space
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CDE: Current Workflow with Ansible Tower – Dev Space12

Workflow is triggered manually in Ansible Tower

- Specify target platforms

- Fill out survey options for automation
- Environment File
- Deploy Directory
- Build Name



CDE: Current Workflow with Ansible Tower – Dev Space13

Execute workflow multiple times for staged builds:

1. GCC Compiler

2. Compilers – Intel, LLVM, Cuda, Platform Specific

3. Third-Party Libraries (TPL’s)

Workflow executed on each target platform to a unique deployment directory



CDE: Current Workflow with Ansible Tower – Dev Space14

Unit Testing

• Individual package tests

• Smoke and feature tests

• Tests provided with packages

• CDE developed tests

Module Testing

• Availability of the modules

• Load, Swap, Unload

• Autoload

With successful testing, promote to qualification space and build weekly



CDE: Current Workflow with Ansible Tower – Qual Space15

User Testing

- Can our customers build on our stack?

- Integration testing with Charon & GEMMA
- Trilinos as a dependency

- If Yes, deploy to production space

With successful testing, promote to production space and link modules publicly



Limitations of the Current Workflow

• Limited parallelism
• Spack Pipelines – We currently lack sustainable gitlab runners
• Desire for Jacamar runners as sustainable solution

• Distributed CLI Spack 

• Coupling of Packages to Spack version
• Converging on need to build from Spack develop branch
• Need process to verify builds in order to promote Spack develop branch commit

• Manual Trigger
• Desire CI/CD workflow on our manifests

• Limited Testing & Analysis
• Is the MPI we are currently building comparable in performance to prior releases?
• Do the features the code teams need in software package X work?
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Future Improvements17

- Improved parallelism

- Public development space for software rolling releases

- Improved automation
- Automate build trigger’s for Continuous Integration and Delivery 
- Sustainable integration testing

- Improved monitoring and user-statistics

- Caching builds

- Generating containers of the CDE software stack

- Provide our tooling for generating builds



Conclusions

1. We strive to provide the ASC Code Teams with the software they require to develop
• And further, the tools they require to develop
• Build caches for rapid deployment of an existing, stable software stack
• Software stack deployment tooling for one-off and experimental builds

2. We envision a unified environment where the software needed by the code teams 
is readily available and with up-to-date versions

3. We strive to develop and maintain sustainable practices so the desired product is 
consistently delivered, no matter how the ecosystem and technology adapt
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Scott Warnock sawarno@sandia.gov

ASC DevOps Core asc-devops@sandia.gov
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