
Sandia National Laboratories is a
multimission laboratory managed

and operated by National Technology
& Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of

Honeywell International Inc., for the
U.S. Department of Energy’s National
Nuclear Security Administration under

contract DE-NA0003525.

History of CDE

ASC DevOps Core:

Gary Lawson

Jonathan Grzybowski

Chr istopher Sul l ivan

Paul Wolfenbarger

Scott Warnock

Etone Mbome

May 25th

2022 Tri-lab Advanced Simulation & Computing
Sustainable Scientific Software Conference

Albuquerque, NM, USA

SAND2022-7044CThis paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in
the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Introduction – What is ASC DevOps Core @ Sandia?

Product Owner:

- Scott Warnock

Scrum Master:

- Etone Mbome

Development Team:

- Jon Grzybowski

- Gary Lawson

- Chris Sullivan

- Paul Wolfenbarger

2

Code Scan

Code Vulnerability
Scanning Tool

What do we do?

Common
Development
Environment

Consistent
Multi-platform
Software Stack

Dockerized
Services

Jenkins
CDash

General Support

Hydra
VisIt

Introduction – Common Development Environment
- Support ASC Code teams on computing platforms critical to the ASC Mission

- Sandia’s vision for unified development environment across computing platforms
- HPC Clusters (x86_64, power9, aarch64, cuda)
- CEE (Common Engineering Environment) Resources
- Desktops & Workstations
- Containers

- Sustainability
- Will the same approach work in 10 years?
- What is the measure of success?
- How to minimize technical debt?

3

Compilers

MPI

TPLs

Providing exceptional service in the national interest

Early days of CDE

Interviewed an experienced DevOps team

• Met with SIERRA DevOps & NGS

• Asked questions on how to promote sustainability
• Manage our technical debt
• Explore new technologies early
• Define interface boundaries

4
Smallest vertical slice

• Two platforms:
• HPC (CTS1) - RHEL 7
• CEE - RHEL 6 & 7

• Two software packages:
• CMake
• Anaconda

Answer fundamental questions:

• How do we measure success?

• How to build software?

• What technology to automate?

• What about containerization?

• What is the process?

How do we measure success?

ASCDO Definition of Done

Monitored
At a glance, did the process PASS/FAIL

Automated
Every process is automated

Tested
Every product is tested as thoroughly as is feasible

Reviewed
Every process is reviewed for value added

5

Technical Debt

Minimize:

• Manual processes

• Maintained code, scripts, modifications

• Unbounded influences and one-offs

Identify:

• Interface boundaries

• Sources of productivity degradation

Sustainability MATR’s to the ASC DevOps Core

How do we build software?6

RPM Builds

Red Hat Package Manager
Commercially available

• Not designed for HPC
ecosystems
• MPI combinatorics
• Exotic hardware

• Only works for Linux

Spack Builds

Alpha-stage multi-platform
package manager

• Designed for HPC
ecosystems
• MPI combinatorics
• Exotic hardware

• Linux, Windows, and
MacOS supported

Spack provides the flexibility required to build for the target platforms

What technology do we use to automate?7

Gitlab CI

• Commercially available
• System administrator or user

-supported

• YAML interface
• Multiple execution types

• SSH, Shell, Docker, etc
• Redundancy in scaling to

multiple platforms
• Supports variables
• Spack supports designing

Gitlab-CI pipelines*

Ansible

• Commercially available
• User-supported

• YAML interface
• Executes on the system

• Can be integrated into
container

• Requires Python on system
• Supports templating

• Efficient scaling to multiple
platforms

• State-driven resource model

Ansible chosen for state-driven resource model, efficient scaling, and templating capabilties

What about containerization?

We initially designed our pipelines to build in a container

• Containers acted as clean rooms which could be discarded after a build

• Buildcache was generated after the build for deployment
• Uploaded to Nexus Repository for reuse

• Deployment on bare-metal from buildcache
• Encountered difficulties with maintaining the buildcache repository and indexes
• Spack often would not/could not install from buildcache because of SHA-1 conflicts

For now, we are not supporting containerized deployments and builds

• Executing containers is not yet available for every target platform, i.e. HPC cluster’s

• Growing interest in containerized deployments
• We will revisit this in the near future

8

Build and Deployment Technologies9

Ansible

Gitlab

Python

Spack

E4S

Approach to Software Deployment

 Vertical Slice
 Support one code team
 Support their software stack
 Explore Technologies
 Create Automated Process
 Build
 Test
 Deploy

• Expand the Slice
• Support additional teams
• Extend software stack
• Improve processes
• Support additional platforms

10

Influences convergence on a unified stack

Deployment Promotion Workflow

1. Development build is automated, but can require some manual development
• Modify package versions and/or variants
• Build and verify stability with testing

2. Once we have a stable build, verify automation can build it cleanly
• No manual intervention
• End-to-end installation without errors or failures

3. Once we can build in automation cleanly
• Verify we can build weekly
• Build out to qualification space for additional testing

4. Once the additional testing passes
• Build in production space as a named release
• Symlink to public module space

11

CDE: Current Workflow with Ansible Tower – Dev Space12

Workflow is triggered manually in Ansible Tower

- Specify target platforms

- Fill out survey options for automation
- Environment File
- Deploy Directory
- Build Name

CDE: Current Workflow with Ansible Tower – Dev Space13

Execute workflow multiple times for staged builds:

1. GCC Compiler

2. Compilers – Intel, LLVM, Cuda, Platform Specific

3. Third-Party Libraries (TPL’s)

Workflow executed on each target platform to a unique deployment directory

CDE: Current Workflow with Ansible Tower – Dev Space14

Unit Testing

• Individual package tests

• Smoke and feature tests

• Tests provided with packages

• CDE developed tests

Module Testing

• Availability of the modules

• Load, Swap, Unload

• Autoload

With successful testing, promote to qualification space and build weekly

CDE: Current Workflow with Ansible Tower – Qual Space15

User Testing

- Can our customers build on our stack?

- Integration testing with Charon & GEMMA
- Trilinos as a dependency

- If Yes, deploy to production space

With successful testing, promote to production space and link modules publicly

Limitations of the Current Workflow

• Limited parallelism
• Spack Pipelines – We currently lack sustainable gitlab runners
• Desire for Jacamar runners as sustainable solution

• Distributed CLI Spack

• Coupling of Packages to Spack version
• Converging on need to build from Spack develop branch
• Need process to verify builds in order to promote Spack develop branch commit

• Manual Trigger
• Desire CI/CD workflow on our manifests

• Limited Testing & Analysis
• Is the MPI we are currently building comparable in performance to prior releases?
• Do the features the code teams need in software package X work?

16

Future Improvements17

- Improved parallelism

- Public development space for software rolling releases

- Improved automation
- Automate build trigger’s for Continuous Integration and Delivery
- Sustainable integration testing

- Improved monitoring and user-statistics

- Caching builds

- Generating containers of the CDE software stack

- Provide our tooling for generating builds

Conclusions

1. We strive to provide the ASC Code Teams with the software they require to develop
• And further, the tools they require to develop
• Build caches for rapid deployment of an existing, stable software stack
• Software stack deployment tooling for one-off and experimental builds

2. We envision a unified environment where the software needed by the code teams
is readily available and with up-to-date versions

3. We strive to develop and maintain sustainable practices so the desired product is
consistently delivered, no matter how the ecosystem and technology adapt

18

Providing exceptional service in the national interest

Points-of-Contact19

Scott Warnock sawarno@sandia.gov

ASC DevOps Core asc-devops@sandia.gov

mailto:sawarno@sandia.gov
mailto:asc-devops@sandia.gov

