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Perspective & Motivation

International Association for Fire Safety Science (IAFSS) Working Group on Measurement and
Computation of Fire Phenomena (MaCFP Working Group) perspective:

« “Establish a structured effort in the fire research community in order to make significant and
systematic progress in fire modeling through a fundamental ‘understanding of fire phenomena” [1]

Sandia motivation:

« Perform validation study of well-documented hydrocarbon pool fires in SIERRA/Fuego as part of the
process of certifying thé code for use in important modeling and simulation applications

Academic motivation:
« Enhance Sandia modeling and simulation codes
« Improve capacity of pool fire modeling

. Ap[)ly modern validation metric to complex dataset and draw useful conclusions, which can be used
in large-scale fire incidents

Relevance to VVUQ community:
Area Validation Metric (AVM) is not an extremely common metric. This

application provides an interesting test case, and an example of how it
might be used in a validation study.




Methanol Fire Background

* This pool fire a specific validation case of International association for Fire Safety
Science (IAFSS) Working Group on Measurement and Computation of Fire Phenomena
(MaCFP Working Group)

 Several National Institute of Standards and Technology (NIST) experiments done to
characterize this fire

» Temperature & velocity are typical validation variables

» Studies also focused on radiative heat transfer and chemical composition

Methanol

Methanol pool fire structure, from Falkenstein-Smith et al., 2020 3



Waterloo Experiment

« 30-31 cm diameter methanol pool fire is a specific validation
case of the |IAFSS MaCFP Working Group

* Good validation case due to the fact that methanol flames do not
produce soot, so fluid mechanics, turbulence, and gas radiation
can be analyzed

« Waterloo methanol pool flame is representative experiment

« Foundational experiment for later experimental work, including
that done by NIST

Waterloo experimental setup, from Weckman, 1986

Weckman pool flame parameters
« Pan diameter: 30.5 cm
« Elevated pan (= 30.5 cm above floor)

« Steady state burning, with 1.07 g/s fuel mass flow
« Lip height: 1 cm




Modeling and Simulation Information

* Modeling tools: SIERRA/Fuego & Nalu

* Turbulence model: Large eddy simulation (LES)

« Turbulence closure model: Subgrid-scale turbulent kinetic energy (K-sgs)

« Combustion model: Strained laminar flamelet model (SLFM)

« Soot model: Two-equation model transporting number density and mass concentration of soot
« Radiation model: Participating media radiation (PMR) using gray-gas approximation

SIERRA/Fuego
« Sandia’s low-Mach, turbulent reacting flow code
» The key element of the Advanced Simulation and Computing (ASC) fire

Outflow B.C.
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Mesh & Temporal Discretization

 Simulations used two mesh resolutions Temporal discretization:

» Closely follows discretization of Ahmed & Trouve « Max CFL number: 0.75
* Time step: 2.5e-4 s
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Area Validation Metric (AVM) Background

Estimates model form uncertainty

Specifically, modified area validation metric (MAVM) used here

Simulation result S bounded by
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Results & Analysis




Contour Plots — Temperature & Axial Velocity

« Temperature: 338 K at pool surface, high temperature core, decreases with height and radius

« Axial velocity: increases vertically due to buoyant acceleration, then decreases. Decreases with

radius.
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Temperature & Axial Velocity — Centerline Profile

* Experimental data typically higher near centerline and at low heights

* Relatively large error in temperature at low heights
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Temperature & Axial Velocity — Radial Profiles

2000 : - : 3
—Prescribed Massflux, Coarse Mesh
- - Prescribed Massflux, Fine Mesh
1800 —-Predicted Massflux, Coarse Mesh |
:rediited I:Iassﬂux. Fine Mesh 2.5+
1600+ o Experimen 1
* Consistent levels of agreement with 1400} .
experimental data as seen in other R e 0
studies of this fire (stmulation values 6cm T = B
. . . 800+ 3
within 30% of experimental values)
600+
* Experimental data typically higher |
. . 200+
near centerline and at low heights | | | . | =
DO 0.05 0.1 0.15 0.2 nﬂ 0.05 0.1 0.15 0.2
. . . r(m) r (m)
* Error bars indicate experimental
3 2000 T T T 3
uncertainty e e ™
oo Predicted Massflux, Coarse Mesh |
-—Predicted Massflux, Fine Mesh 2.5}
1600+ o Experiment 4
1400+ al
1200+ —a
2 cm ¥ 1000} E 1.5}
i 800} 5"
600 ai
400+
0.5+
200
& . , .
0 0.05 0.1 0.15 0.2

g B : .2
r (m) r (m) ° 11




Temperature & Axial Velocity — Ahmed and Trouve Radial Profiles
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AVM, Time-Averaged Temperature
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4,6, 8, 10 cm)

« Experimental data values always larger than simulation results (only d*)

« Uncertainty interval taken to be [S — F,d*, S+ F,d"]

« d* larger for fine mesh - not expected

o
~
T

o
o
T

d* =306.7 :

Probability
e Qo
[4)]

IS
T

o
w
T

o
)
T

o
=y

o

700 800 900 1000 1100 1200 1300 1400
Temperature (K)

Coarse Mesh

2]
o
o

-

Relative Predicted Uncertainty of the Grids
Fine mesh uncertainty larger than coarse mesh uncertainty for
some variables
Both meshes relatively fine based on related simulation studies

Numerical
[|= === Experiment

<
©

e
™
T

o
~
T

o
o
T

Results generally within acceptable agreement with g os d* = 342.6
experimental data, related simulation results &Z:
Due to time and computational resource constraints, grid L
convergence not pursued further o1
T e
Fine Mesh 13



AVM, Time-Averaged Axial Velocity

« Experimental data values always larger than simulation results (only d*)
« Uncertainty interval taken to be [S — F,d*, S+ F.d*]
« d* smaller for fine mesh - expected
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AVM, Temperature, Time Series

« Time-series data taken at z = 4 cm above pool surface

* 10 s of data used (found sufficient for describing average behavior
from convergence study)

« Because time is an additional parameter, the actual d~ value (dy)
is from the area to the right of the experimental value, and above
the intersection with the simulation curve
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AVM, Axial Velocity, Time Series

* More time spent below experimental value
« Time-series more symmetric about experimental value
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AVM, Flame Height

« Flame height commonly defined using an intermittency definition (value at which visible flame tip spends
50% of time above, 50% below)

* Here, calculated using two threshold variables to define flame tip: 1) Temperature & 2) Mixture Fraction
« Threshold variables varied about value (+15%) which produced experimentally reported value
« Flame height prediction less sensitive to variations in mixture fraction

« AVM predicts more symmetric uncertainty distribution about expected value
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Conclusions

* Analysis of methanol pool fire conducted as part of validation study for SIERRA /Fuego
* Results showed trends & errors consistent with related studies
* Area validation metric provides way to quantify model form uncertainty

* AVM shows that more work could be done to understand how model form uncertainty varies with
mesh resolution

* Possible atypical use of MAVM on time-series data

* AVM shows mismatch between predicted flame height and experimental value less sensitive to
variations in mixture fraction than temperature. Mismatch about experimental value also more
symmetric for mixture fraction

* Our analysis showed that mixture fraction is preferrable for this application.
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