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Perspective & Motivation

International Association for Fire Safety Science (IAFSS) Working Group on Measurement and 
Computation of Fire Phenomena (MaCFP Working Group) perspective: 
• “Establish a structured effort in the fire research community in order to make significant and 

systematic progress in fire modeling through a fundamental understanding of fire phenomena” [1]

Sandia motivation: 
• Perform validation study of well-documented hydrocarbon pool fires in SIERRA/Fuego as part of the 

process of certifying the code for use in important modeling and simulation applications

Academic motivation: 
• Enhance Sandia modeling and simulation codes
• Improve capacity of pool fire modeling
• Apply modern validation metric to complex dataset and draw useful conclusions, which can be used 

in large-scale fire incidents

Relevance to VVUQ community: 

Area Validation Metric (AVM) is not an extremely common metric. This 

application provides an interesting test case, and an example of how it 

might be used in a validation study.
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Methanol Fire Background

• This pool fire a specific validation case of International association for Fire Safety 
Science (IAFSS)  Working Group on Measurement and Computation of Fire Phenomena 
(MaCFP Working Group)

• Several National Institute of Standards and Technology (NIST) experiments done to 
characterize this fire

• Temperature & velocity are typical validation variables

• Studies also focused on radiative heat transfer and chemical composition

Methanol pool fire structure, from Falkenstein-Smith et al., 2020 3



Waterloo Experiment

Waterloo experimental setup, from Weckman, 1986

• 30-31 cm diameter methanol pool fire is a specific validation 

case of the IAFSS MaCFP Working Group

• Good validation case due to the fact that methanol flames do not 

produce soot, so fluid mechanics, turbulence, and gas radiation 

can be analyzed

• Waterloo methanol pool flame is representative experiment

• Foundational experiment for later experimental work, including 

that done by NIST

Weckman pool flame parameters

• Pan diameter: 30.5 cm

• Elevated pan (≥ 30.5 cm above floor)

• Steady state burning, with 1.07 g/s fuel mass flow

• Lip height: 1 cm
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Modeling and Simulation Information

• Modeling tools: SIERRA/Fuego & Nalu

• Turbulence model: Large eddy simulation (LES)

• Turbulence closure model: Subgrid-scale turbulent kinetic energy (K-sgs)

• Combustion model: Strained laminar flamelet model (SLFM)

• Soot model: Two-equation model transporting number density and mass concentration of soot 

• Radiation model: Participating media radiation (PMR) using gray-gas approximation 

SIERRA/Fuego

• Sandia’s low-Mach, turbulent reacting flow code

• The key element of the Advanced Simulation and Computing (ASC) fire 

environment simulation project

Nalu

• Generalized unstructured massively parallel low Mach flow code 

designed to support a variety of open applications of interest built on 

the Sierra Toolkit and Trilinos solver Tpetra solver stack

• Used to handle radiation modeling – coupled to Fuego
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Mesh & Temporal Discretization 

• Simulations used two mesh resolutions

• Closely follows discretization of Ahmed & Trouve 

Mesh near pan, from Ahmed and 

Trouve, 2021

Coarse and fine meshes near pan, from Hubbard 

et al., 2022

Temporal discretization: 

• Max CFL number: 0.75

• Time step: 2.5e-4 s

Study Coarse Fine

Ahmed & Trouve 5 mm 1 mm

Hubbard 2.5 mm 1.25 mm

6



Area Validation Metric (AVM) Background

• Estimates model form uncertainty

• Specifically, modified area validation metric (MAVM) used here

• Simulation result 𝑆 bounded by
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Results & Analysis
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Contour Plots – Temperature & Axial Velocity

• Temperature: 338 K at pool surface, high temperature core, decreases with height and radius

• Axial velocity: increases vertically due to buoyant acceleration, then decreases. Decreases with 

radius.
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Temperature & Axial Velocity – Centerline Profile

• Experimental data typically higher near centerline and at low heights

• Relatively large error in temperature at low heights
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Temperature & Axial Velocity – Radial Profiles

• Consistent levels of  agreement with 
experimental data as seen in other 
studies of  this fire (simulation values 
within 30% of  experimental values)

• Experimental data typically higher 
near centerline and at low heights

• Error bars indicate experimental 
uncertainty

2 cm

6 cm
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Temperature & Axial Velocity – Ahmed and Trouve Radial Profiles

• Similar “M-shaped” profile. More 
dramatic for z = 2 cm

• Similar errors & error trends to 
those seen in our data

2 cm

6 cm

Radial profiles, from Ahmed et al., 2021 12



AVM, Time-Averaged Temperature

• Five axial locations for simulation results and experimental data (z = 2, 

4, 6, 8, 10 cm) 

• Experimental data values always larger than simulation results (only 𝑑+)

• Uncertainty interval taken to be [𝑆 − 𝐹𝑠𝑑
+, 𝑆 + 𝐹𝑠𝑑

+]
• 𝑑+ larger for fine mesh → not expected

Coarse Mesh 

Fine Mesh 

𝑑+ = 342.6

𝑑+ = 306.7

Relative Predicted Uncertainty of the Grids

• Fine mesh uncertainty larger than coarse mesh uncertainty for 

some variables

• Both meshes relatively fine based on related simulation studies

• Results generally within acceptable agreement with 

experimental data, related simulation results

• Due to time and computational resource constraints, grid 

convergence not pursued further
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AVM, Time-Averaged Axial Velocity

• Experimental data values always larger than simulation results (only 𝑑+)

• Uncertainty interval taken to be [𝑆 − 𝐹𝑠𝑑
+, 𝑆 + 𝐹𝑠𝑑

+]
• 𝑑+ smaller for fine mesh → expected

𝑑+ = 0.212 𝑑+ = 0.211

Coarse Mesh Fine Mesh 
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AVM, Temperature, Time Series 

• Time-series data taken at z = 4 cm above pool surface

• 10 s of data used (found sufficient for describing average behavior 

from convergence study)

• Because time is an additional parameter, the actual 𝑑− value (𝑑𝑎
−) 

is from the area to the right of the experimental value, and above 

the intersection with the simulation curve

𝑑+ = 428.96

𝑑− = 603.81

𝑑𝑎
− = 55.23

Atypical Application of MAVM

• 𝑑𝑎
− represents time spent above experimental value

• 𝑑+ represents time spent below experimental value

• Time-averaged simulation value lower than 

experimental value, as seen on Slide 8

• Simulation uncertainty will reflect this fact
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AVM, Axial Velocity, Time Series 

• More time spent below experimental value

• Time-series more symmetric about experimental value

𝑑+ = 0.273

𝑑− = 0.769

𝑑𝑎
− = 0.143

Atypical Application of MAVM

• 𝑑𝑎
− represents time spent above experimental value

• 𝑑+ represents time spent below experimental value

• Time-averaged simulation value lower than 

experimental value, as seen on Slide 8

• Simulation uncertainty will reflect this fact
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AVM, Flame Height

• Flame height commonly defined using an intermittency definition (value at which visible flame tip spends 

50% of time above, 50% below)

• Here, calculated using two threshold variables to define flame tip: 1) Temperature & 2) Mixture Fraction

• Threshold variables varied about value (±15%) which produced experimentally reported value

• Flame height prediction less sensitive to variations in mixture fraction

• AVM predicts more symmetric uncertainty distribution about expected value

𝑑+ = 0.0233

𝑑− = 0.0533

𝑑+ = 0.010

𝑑− = 0.010

Temperature Mixture Fraction
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Conclusions

• Analysis of  methanol pool fire conducted as part of  validation study for SIERRA/Fuego

• Results showed trends & errors consistent with related studies

• Area validation metric provides way to quantify model form uncertainty 

• AVM shows that more work could be done to understand how model form uncertainty varies with 
mesh resolution

• Possible atypical use of  MAVM on time-series data

• AVM shows mismatch between predicted flame height and experimental value less sensitive to 
variations in mixture fraction than temperature. Mismatch about experimental value also more 
symmetric for mixture fraction

• Our analysis showed that mixture fraction is preferrable for this application.
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