
Spack-Manager: A case study for managing complex 
software development workflows with Spack 

Philip Sakievich (SNL)
psakiev@sandia.gov

5/25/2022

Sandia National Laboratories is a multimission laboratory managed and 
operated by National Technology & Engineering Solutions of Sandia, 

LLC, a wholly owned subsidiary of Honeywell International Inc., for the 
U.S. Department of Energy’s National Nuclear Security Administration 

under contract DE-NA0003525.

SAND NUMBER PLACE HOLDER

SAND2022-6989CThis paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in
the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

mailto:psakiev@sandia.gov


2 Exascale Computing Project

Overview

• ExaWind software
• Philosophies that led to Spack-

Manager
• Organization of Spack-Manager
• Tools for software development
• Getting developers on board
• Containers
• Conclusions Acknowledgements: Jon Rood, Timothy Smith, 

Luke Peyralans, Spack Dev Team, Spack 
community 

ECP: Funding Statement
This research was supported by the Exascale 

Computing Project (17-SC-20-SC), a 
collaborative effort of two U.S. Department of 
Energy organizations (Office of Science and 

the National Nuclear Security 
Administration) responsible for the planning 

and preparation of a capable exascale 
ecosystem, including software, applications, 

hardware, advanced system engineering, and 
early testbed platforms, in support of 

the nation’s exascale computing imperative.



3 Exascale Computing Project

ExaWind: The Motivating Application
• ExaWind software stack:

– Combine two loosely 
coupled CFD codes with 
entirely different 
software stacks (Trilinos 
and AMReX)

– Living on the develop 
branch of multiple 
dependencies

– Project is actively 
supporting development 
of 7+ software packages 
in the stack (CPU+GPU)

• Challenges:
– Building
– Developing
– Testing
– Deploying

Packages under active 
development



4 Exascale Computing Project

Spack: Package Manager++

• Managing these dependencies leads to 
Spack

• Spack has many attractive features:
– Complex package and environment 

configurations
– Embedded tribal HPC knowledge
– A unique, scalable, multicomponent 

development tool (spack develop)
• Using Spack has some challenges too:

– A large project with a lot of moving parts
– Things happen quickly and slowly all at the 

same time
– Sensitivity to changes has decreased over time, 

but is still non trivial

???



5 Exascale Computing Project

Spack-Manager Philosophies

• Spack-Manager is an extension to 
Spack that aims to act as a buffer 
between Spack and our end 
application
– Increases our agility
– Framework to prototype new Spack 

features
– Manage machine specific configurations 

and create a machine agnostic interface 
• Spack-Manager also seeks to unify a 

workflow that serves 3 distinct user 
profiles
– Administrators
– Application developers
– End users/analysts

Blissfully 
Unaware

Minimal Spack 
Knowledge

Heavy Spack 
Knowledge

End Users

Application 
Developers

Admins

Population size of the user profile has an inverse 
relationship with required understanding of Spack



6 Exascale Computing Project

Spack-Manager

Spack-Manager Layout

• Spack-Manager
– Project agnostics 

code/scripts
• Tooling and testing

– Pre-configured 
locations

– Project specific 
information
• Customize packages
• Create machine specific 

implementations
• Add machine specific 

templates
 

Spack-Scripting

scripting 

unit tests 

manager

environments

modules

views

Project Specific 
Information

repo

configs

scripts

templates

Spack
(submodule)

scripts



7 Exascale Computing Project

The Vision: Unified Tooling and Environments
• Common environment for 

administrators and developers 
leads to reuse and consistency
– I’m building exactly what is on 

my dashboard
• Common deployment tools 

means common interface for 
analysts

• A machine agnostic interface 
makes this highly deployable

Daily Build Environment

Nightly Tests/CDash Docker 
Image/Snapshot

Module Creation Github CI/CD

Admin Workflow

Development 
Environment

Module Creation

Developer Workflow

- module use [/path/to]/spack-manager/modules
- module load xyz

End User Environment



8 Exascale Computing Project

How do we do this?
• Utilize Spack API’s to write Spack 

extensions
– Environment curation
– All of our scripts serve to reduce the end user 

API
– Can be replicated through core Spack 

commands and a little manual intervention
• A core example of this is:

– find-machine + create-env
• find-machine: a utility that allows custom python 

scripts to identify the current machine
• create-env: uses find-machine and stored configs to 

automate platform specific environments

spack env create -d [foo]

spack env activate -d [foo]

spack repo add ${SPACK_MANAGER}/repos/exawind

manually insert machine specific configs: 
packages.yaml, configs.yaml, compilers.yaml

spack add [specs]

spack env deactivatespack manager create-env –d [foo] –s [specs]



9 Exascale Computing Project

What does it look like?
spack manager create-env --spec exawind amr-wind nalu-wind



10 Exascale Computing Project

Onboarding Developers

• Conflict: 1 command build vs a 
learning curve
– Made significant efforts to reduce the API

• Ask developers to learn 3 things about 
Spack:
– How to query the API for help i.e. --help 

and spack info
– How to read and write a Spack spec
– What the major steps in the Spack build 

process are
• Learn to speak the basics of the 

language 
• Since roll out only 1-2 issues a month 

from entire team of developers



11 Exascale Computing Project

Development Environment

• spack develop is amazingly 
powerful but …

• Setting up a development 
environment can still be a 
lot of work

• Can start to feel tedious 
when done often

• Number of commands can 
be reduced with some 
basic assumptions

Basic Setup

• source ${SPACK_MANAGER}/start.sh
• spack manager create-env --specs do re mi
• spack env activate –d .

Development 
Commands

• spack develop do@develop
• spack develop re@main
• spack develop mi@main

Final 
Touches

• cd re
• git remote add user git@github.com:user/feature
• git fetch --all && git checkout feature
• spack install

mailto:git@github.com:user/feature


12 Exascale Computing Project

Bash ”quick-commands”

• Wrap the functionality of basic 
setup and development 
commands together

• Common features:
– Shell source Spack/Spack-

Manager
– Create an anonymous Spack 

environment
– Activate the created environment

• Development specific 
assumptions:
– All concrete spec’s are intended 

as develop specs 
([name]@[version])

– Anything not pre-cloned should be 
fetched via spack develop

• quick-create-dev --spec do@develop re@main mi@main



13 Exascale Computing Project

Externals: Re-Using Binaries

• Spack has several different ways to 
reuse binaries
– Upstreams
– Binary Caches
– --reuse
– Externals

• First 3 rely directly on the concertizer 
to make the “best” decision

• Development workflow often wants 
specific binaries

• Created a way to auto generate 
externals in an externals.yaml file

• “Snapshots” are time-dated versions of 
the software installed on each system

Environment

View

Snapshot

ExaWind

Nalu-Wind

Trilinos

TPL

AMR-Wind

TPL



14 Exascale Computing Project

Containers

• Partnered with E4S to create nightly 
containers

• Software provenance preserved through 
history of containers on Docker Hub 

• Infrastructure makes containerization 
trivial
– E4S added 4 lines to their base Ubuntu 

docker configuration

• With externals + container we can drive 
our CI for every package through 1 image

• Developers can download image and 
have same environment on laptops



15 Exascale Computing Project

Pros and Cons of Spack Driven Development

Pros

• Spack is already solving the dependency issues
• Spack is scalable

– DAG parallelism
• Case study 3 compiler configurations for ExaWind:

– 1.5 hours with DAG parallelism
– 4.5+ hours without

• Spack is configurable
– +cuda and ~cuda in same environment (DAG 

parallel)

• Spack is extendable
• Spack is testable
• Simplified and unified API dramatically reduces 

Dev-Ops workload

Cons

• Spack can be overwhelming
– 3-5 ways to do just about everything

• Spack build process has some quirks
– Hash based issues and confusion
– Bootstrapping and occasional ssl issues 

• Spack data management and logs make 
developers uncomfortable
– spack-build-[hash]
– spack cd -b [package]

• Spack still has some optimization to do
– spack install is a too big of a hammer for 

incremental builds



16 Exascale Computing Project

Conclusions

• Very happy with Spack as the driver for development
– Unified API dramatically reduces infrastructure needs
– Gives developers the tools to customize their own environments

• Cons can be mitigated with education and light scripts
• Highly recommend extension to wrapping when interfacing with Spack

– Light buffer for applications
– Less code is more

• Spack-Manager is one example of how this can be done
– With Spack there are 3-5 ways to do everything 



17 Exascale Computing Project

What’s next for Spack-Manager?

• Immediate future:
– Repo migration: 

• https://github.com/psakievich/spack-manager to https://github.com/sandialabs
– Improve unit-testing 
– Upstream more package improvements to Spack

• Long term:
– Upstream features to Spack and 

formalize pipeline for future efforts
– Add additional projects

• Pele-C 
• ???

Contact: psakiev@sandia.gov

https://github.com/psakievich/spack-manager
https://github.com/sandialabs
mailto:psakiev@sandia.gov

