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Overview

• ExaWind software
• Philosophies that led to Spack-

Manager
• Organization of Spack-Manager
• Tools for software development
• Getting developers on board
• Containers
• Conclusions Acknowledgements: Jon Rood, Timothy Smith, 

Luke Peyralans, Spack Dev Team, Spack 
community 
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hardware, advanced system engineering, and 
early testbed platforms, in support of 
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ExaWind: The Motivating Application
• ExaWind software stack:

– Combine two loosely 
coupled CFD codes with 
entirely different 
software stacks (Trilinos 
and AMReX)

– Living on the develop 
branch of multiple 
dependencies

– Project is actively 
supporting development 
of 7+ software packages 
in the stack (CPU+GPU)

• Challenges:
– Building
– Developing
– Testing
– Deploying

Packages under active 
development
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Spack: Package Manager++

• Managing these dependencies leads to 
Spack

• Spack has many attractive features:
– Complex package and environment 

configurations
– Embedded tribal HPC knowledge
– A unique, scalable, multicomponent 

development tool (spack develop)
• Using Spack has some challenges too:

– A large project with a lot of moving parts
– Things happen quickly and slowly all at the 

same time
– Sensitivity to changes has decreased over time, 

but is still non trivial

???
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Spack-Manager Philosophies

• Spack-Manager is an extension to 
Spack that aims to act as a buffer 
between Spack and our end 
application
– Increases our agility
– Framework to prototype new Spack 

features
– Manage machine specific configurations 

and create a machine agnostic interface 
• Spack-Manager also seeks to unify a 

workflow that serves 3 distinct user 
profiles
– Administrators
– Application developers
– End users/analysts

Blissfully 
Unaware

Minimal Spack 
Knowledge

Heavy Spack 
Knowledge

End Users

Application 
Developers

Admins

Population size of the user profile has an inverse 
relationship with required understanding of Spack
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Spack-Manager

Spack-Manager Layout

• Spack-Manager
– Project agnostics 

code/scripts
• Tooling and testing

– Pre-configured 
locations

– Project specific 
information
• Customize packages
• Create machine specific 

implementations
• Add machine specific 

templates
 

Spack-Scripting

scripting 

unit tests 

manager

environments

modules

views

Project Specific 
Information

repo

configs

scripts

templates

Spack
(submodule)

scripts
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The Vision: Unified Tooling and Environments
• Common environment for 

administrators and developers 
leads to reuse and consistency
– I’m building exactly what is on 

my dashboard
• Common deployment tools 

means common interface for 
analysts

• A machine agnostic interface 
makes this highly deployable

Daily Build Environment

Nightly Tests/CDash Docker 
Image/Snapshot

Module Creation Github CI/CD

Admin Workflow

Development 
Environment

Module Creation

Developer Workflow

- module use [/path/to]/spack-manager/modules
- module load xyz

End User Environment
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How do we do this?
• Utilize Spack API’s to write Spack 

extensions
– Environment curation
– All of our scripts serve to reduce the end user 

API
– Can be replicated through core Spack 

commands and a little manual intervention
• A core example of this is:

– find-machine + create-env
• find-machine: a utility that allows custom python 

scripts to identify the current machine
• create-env: uses find-machine and stored configs to 

automate platform specific environments

spack env create -d [foo]

spack env activate -d [foo]

spack repo add ${SPACK_MANAGER}/repos/exawind

manually insert machine specific configs: 
packages.yaml, configs.yaml, compilers.yaml

spack add [specs]

spack env deactivatespack manager create-env –d [foo] –s [specs]
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What does it look like?
spack manager create-env --spec exawind amr-wind nalu-wind



10 Exascale Computing Project

Onboarding Developers

• Conflict: 1 command build vs a 
learning curve
– Made significant efforts to reduce the API

• Ask developers to learn 3 things about 
Spack:
– How to query the API for help i.e. --help 

and spack info
– How to read and write a Spack spec
– What the major steps in the Spack build 

process are
• Learn to speak the basics of the 

language 
• Since roll out only 1-2 issues a month 

from entire team of developers
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Development Environment

• spack develop is amazingly 
powerful but …

• Setting up a development 
environment can still be a 
lot of work

• Can start to feel tedious 
when done often

• Number of commands can 
be reduced with some 
basic assumptions

Basic Setup

• source ${SPACK_MANAGER}/start.sh
• spack manager create-env --specs do re mi
• spack env activate –d .

Development 
Commands

• spack develop do@develop
• spack develop re@main
• spack develop mi@main

Final 
Touches

• cd re
• git remote add user git@github.com:user/feature
• git fetch --all && git checkout feature
• spack install

mailto:git@github.com:user/feature
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Bash ”quick-commands”

• Wrap the functionality of basic 
setup and development 
commands together

• Common features:
– Shell source Spack/Spack-

Manager
– Create an anonymous Spack 

environment
– Activate the created environment

• Development specific 
assumptions:
– All concrete spec’s are intended 

as develop specs 
([name]@[version])

– Anything not pre-cloned should be 
fetched via spack develop

• quick-create-dev --spec do@develop re@main mi@main
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Externals: Re-Using Binaries

• Spack has several different ways to 
reuse binaries
– Upstreams
– Binary Caches
– --reuse
– Externals

• First 3 rely directly on the concertizer 
to make the “best” decision

• Development workflow often wants 
specific binaries

• Created a way to auto generate 
externals in an externals.yaml file

• “Snapshots” are time-dated versions of 
the software installed on each system

Environment

View

Snapshot

ExaWind

Nalu-Wind

Trilinos

TPL

AMR-Wind

TPL
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Containers

• Partnered with E4S to create nightly 
containers

• Software provenance preserved through 
history of containers on Docker Hub 

• Infrastructure makes containerization 
trivial
– E4S added 4 lines to their base Ubuntu 

docker configuration

• With externals + container we can drive 
our CI for every package through 1 image

• Developers can download image and 
have same environment on laptops
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Pros and Cons of Spack Driven Development

Pros

• Spack is already solving the dependency issues
• Spack is scalable

– DAG parallelism
• Case study 3 compiler configurations for ExaWind:

– 1.5 hours with DAG parallelism
– 4.5+ hours without

• Spack is configurable
– +cuda and ~cuda in same environment (DAG 

parallel)

• Spack is extendable
• Spack is testable
• Simplified and unified API dramatically reduces 

Dev-Ops workload

Cons

• Spack can be overwhelming
– 3-5 ways to do just about everything

• Spack build process has some quirks
– Hash based issues and confusion
– Bootstrapping and occasional ssl issues 

• Spack data management and logs make 
developers uncomfortable
– spack-build-[hash]
– spack cd -b [package]

• Spack still has some optimization to do
– spack install is a too big of a hammer for 

incremental builds
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Conclusions

• Very happy with Spack as the driver for development
– Unified API dramatically reduces infrastructure needs
– Gives developers the tools to customize their own environments

• Cons can be mitigated with education and light scripts
• Highly recommend extension to wrapping when interfacing with Spack

– Light buffer for applications
– Less code is more

• Spack-Manager is one example of how this can be done
– With Spack there are 3-5 ways to do everything 
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What’s next for Spack-Manager?

• Immediate future:
– Repo migration: 

• https://github.com/psakievich/spack-manager to https://github.com/sandialabs
– Improve unit-testing 
– Upstream more package improvements to Spack

• Long term:
– Upstream features to Spack and 

formalize pipeline for future efforts
– Add additional projects

• Pele-C 
• ???

Contact: psakiev@sandia.gov

https://github.com/psakievich/spack-manager
https://github.com/sandialabs
mailto:psakiev@sandia.gov

