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s I Motivation: Agile simulation of complex assemblies

hermetic electrical

connector chamfer

stress field in glass seal
after manufacturing

fillet

thread

Domains typically contain many geometric features
that must be removed before analysis.

Heuristics are often used to defeature geometry.

Goals of simulation can vary during design process.

Heuristics are used to construct finite element mesh.



4‘ Motivation: Image-based analysis

Johnson, et al., 2019, "Predicting the reliability of an additively-manufactured metal

part for the third Sandia fracture challenge by accounting for random material
strain f|e|d defects,” International Journal of Fracture, v. 218, pp. 231-243
CT reconstruction of AM
. art (triangulation
cut-away = p ( g )
view ‘ P .
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®< manufactured

Typical geometric reconstructions require a smoothing
or decimation process before modeling can commence.



s | Motivation: Typical domain (geometry) teatures
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Motivation: Domain discretization

to domain geometry.
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7 ‘ Motivation: Separate domain discretization from
solution discretization

original domain
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defeature

Impact of domain defeaturing? depends on goals of simulation



s | Motivation: Separate domain discretization from
solution discretization |

« Domain defeaturing is needed to control FEA discretization quality, size, and critical
time step (explicit dynamics)

« Domain defeaturing typically requires human intervention (heuristics).

* For FEA, domain discretization and solution discretization are synonymous
(isoparametric).

« Geometric features can require a fine local discretization while solution does not.
 Heuristics are often used in mesh design.

* Meshes are typically designed with goal in mind, thus making it cumbersome to reuse.
« Adaptivity requires going back to geometric model of domain. .

Alternative hybrid approach: separate domain discretization and
solution approximation using an element-free formulation.



A hybrid element-free approach

finite-element approach

» defeature domain geometry based on goals
* create a mesh based on goals

* mesh discretizes domain and solution

* quadrature of weak form is easy

* visualization of results using mesh

» adaptivity of mesh is hard

mesh-free approach

* no defeaturing of domain geometry

« no discretization of domain

« connectivity of domain is undefined (need
computational geometry)

« quadrature of weak form is very hard

* visualization of results is cumbersome

Alternative hybrid approach: separate domain discretization and
solution approximation using an element-free formulation.



» | Hybrid approach: fine-scale triangulation

AT AT

create an element-free
original domain basis using triangulation.

Q O : fine-scale triangulation




1 | Element-free basis functions

e Element-free basis functions
automatically include geometric
features at all scales.

 Solution discretization is separate
from domain discretization.

« No need to defeature domain.




Tet-meshing methods

« Delaunay

« advancing front
* background grid
« envelope

CDFEM

2 ‘ Hybrid approach: fine-scale triangulation

A verified conformal decomposition finite element method for
implicit, many-material geometries

Scott A. Roberts *, Hector Mendoza, Victor E. Brunini, David R. Noble

(b) Electrolyte

(a) Particles
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» | Hybrid element-free approach

* no defeaturing of domain

 discretize domain using fine-scale triangulation (a mesh, but poor quality is okay)
» use hp-cloud to define solution discretization (GBC, RK)

» use second hp-cloud to define quadrature and ensure coercivity

» projection of solution gradient to obtain polynomial consistency

* visualization of results using fine-scale mesh

pros

. : cons
« symmetric, Galerkin , , L :
e linear or nonlinear * constant material properties within a domain
« implicit or explicit dynamics * material interfaces: have to use weak

« can do higher order enforcement such as mortar method

« can do direct or mixed formulation * lesssparse
« adaptivity is seamless

* can use poor quality tet mesh

« adaptivity is facilitated

* should work for H(div) and H(curl) spaces

* reduced order modeling through coarse discretizations
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Hybrid element-tree approach

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, VOL. 37, 229-256 (1994)

ELEMENT-FREE GALERKIN METHODS

T. BELYTSCHKO, Y. Y. LU AND L. GU

Department of Civil Engineering, Robert R. McCormick School of Engineering and Applied Science,
The Technological Institute, Northwestern University, Evanston 11 60208-3109, U.S.A.

domain influence

Figure 1. Cell structure for quadrature in EFGM and domains of quadrature point




15 ‘ Moving Least Squares (Reproducing Kernel)

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, VOL, 37, 229-256 (1994)

The MLS shape functions ¢;(X)are defined as a ELEMENT-FREE GALERKIN METHODS
spatial modulation of the nodal weight functions. \

T. BELYTSCHKO, Y. Y. LU AND L. GU

Department of Civil Engineering, Robert R. McCormick School of Engineering and Applied Science,
The Technological Institute, Northwestern University, Evanston 1L 60208-3109, U.S.A.

or(X) = cr(X)wr(X)

where the modulation function ¢;(X) is found through a nodal Weight function
least square minimization process resulting in
1} wy(X)
r(X) = g (XA (X)g(X)
where 2 06F
A(X) = Z W](X)g(X[)gT(X[) (sum over neighbors) 041
ley ol
g'(X)={1X; X,} (linear reproducibility) L |

;

Note: shape function construction is algebraic. .
circular or rectangular support



| Moving Least Squares
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Computational Mechanics 18 (1996) 225-235 -C' Springer-Verlag 1996

Continuous meshless approximations for nonconvex bodies by
diffraction and transparency

D. Organ, M. Fleming, T. Terry, T. Belytschko
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Fig, 2a-d, Contours for weight and shape functions associated with

b node A constructed using the visibility criterion. a Weight
Fig, 1a,b. Domains of influence near nonconvex boundaries using the function near a crack Ti[’a b Sh3[3ﬁ function near a crack “P: C W'f-‘iﬂht
visibility criterion a Supporinear a hole, b Support near a crack tip function near a hole, d Shape function near a hole

All these methods (visibility, transparency, diffraction)
require use of computational geometry.



Computational Mechanics 18 (1996) 225-235 () Springer-Verlag 1996

Continuous meshless approximations for nonconvex bodies by
diffraction and transparency

D. Organ, M. Fleming, T. Terry, T. Belytschko

diffraction method transparancy method

All these methods (visibility,
transparency, diffraction) require
use of computational geometry.

Fig. 5a-d. Contours for weight and shape functions associated with Fig. 8a-d. Contours for weight and shape functions associated with
node A near a crack tip constructed using the diffraction method. node A near a crack tip constructed using the transparency
The quartic weight function in {2.18b) was used with d,,,, = 2.01 method. The quartic weight function in (2.18b) was used with

a Weight function for 2 = 1, b Shape function for 1 = 1, ¢ Weight d,,, = 2.01.a Weight function for x = 1.0, b Shape function for x = 1.0,
function for 2 = 2, d Shape function for 4 =2 ¢ Weight function for x = 0.5, d Shape function for x = 0.5
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Manifold geodesic

Geodesic: path that provides the shortest
distance along a manifold

(k<]

https://en.wikipedia.org/wiki/Geodesic

Euclidean manifold with boundary
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Geodesics in Heat: A New Approach to Computing Distance
Based on Heat Flow

KEENAN CRANE

Caltech

and

CLARISSE WEISCHEDEL and MAX WARDETZKY,
University of Géttingen

ACM Trans. Graph. 2013 Vol. 32 Issue 5 Pages Article 152

ALGORITHM 1: The Heat Method
I. Integrate the heat flow u = Au for some fixed time .

II. Evaluate the vector field X = —Vu/|Vu|.
III. Solve the Poisson equation A¢ =V - X.

r
Py p’

Ry e
N

X ¢

Fig. 5. Outline of the heat method. (I) Heat u is allowed to diffuse for a
brief period of time (left). (II) The temperature gradient Vu (center left) is
normalized and negated to get a unit vector field X (center right) pointing
along geodesics. (II) A function ¢ whose gradient follows X recovers the
final distance (right).

Fig.1. Geodesic distance from a single point on a surface. The heat method
allows distance to be rapidly updated for new source points or curves.



2 ‘ Weight functions using heat fl
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2 ‘ Weight functions using heat flow

=
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Node placement

 uniform on boundary
« random close packing on interior (maximal
Poisson sampling)

packing size:

H =0.1
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Weight function support size

support size

encloses underlying tri mesh

packing size: H = 0.1

CD: .. .
R=2H —"

linear

R=3H
quadratic

[ R:4H

cubic






% | How to do quadrature?

Observe that partition-of-unity property allows us to approximate any continuous function
arbitrarily closely using only point evaluations as long as basis functions have local support.

Given ZgbK(X) =1 thenitfollowsthat f(x)= Z f(xg)opK(x) ;= fr(x) non-interpolatory
K K

approximation

Theorem: For every ¢ > 0 and x € €, there exists h(e) > 0 such that | f,(x)—f(x) | < e.

It follows that /f(x)dQ%/fh(x)dQ

with ‘/fh ) dS) — /f dQ‘ /|fh |dQ</5dQ:V-€

Can obtain rates of convergence using Taylor's theorem.



Approximation property

function approximation

| f@) =120 -1z
fv = feer(e)
let f(z)=|2z—1]vx 08| =1

v = flex)éx(z)

0 0.2 0.4 0.6 0.8



28 ‘ Quadrature

/f(X)dQ%/fh(X) dQ:/Zf(XK)¢K(X) dQ:Zf(XK>/¢K(X) df}

K K

Define quadrature weightas| wx = | ¢x(x)dS)
Q

/ ) d2 ~ Y wie f(x)
K

Can show that ZWK —V and ZWK X = / <dO Now have a second-order integration scheme
% % Q that can integrate linear functions exactly.



» | Quadrature

= ) = )= ) =
Note that EK:WK EK:/Q¢K<X>CZ /Q;qﬁ;{(x)d /Qld V

Also, since ZXK i (x)=x
K

Now have a second-order integration scheme that can integrate linear functions exactly.

Y wik =V ZwKszfde
K K 0

Can extend to higher-order integration using higher-order reproducing conditions.
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Quadrature example

f(x,y) = sin(mz/2) sin(my)

CeITor =

> wil k) - /Q d
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Quadrature example

H =0.1 H =0.05

Evaluate error for 10 realizations.



32 ‘ Quadrature weights
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Q

0.035
0.03 - 100 F
o]
0.025 boundary °
et =— N 10 samples
0.02 //./:.. .. " . \\\
4 o, %% ° ® *w,® \ -1 L
/ .. J.. [ ‘ 10
0015 B .’ 4 [ T 0™ ..O. \ -
WK interior '\ 3 :."’..’.'U‘:.. . .:"l.;l . .
001 b --"""7° \\\ i ... L4 o* ~...o ...l‘.. ..// E error
. ,'t s eete ) .;’
Soney, < - _ Pt
0.0 [ER WM 7o
I M -2
‘E corner 10°F
0 __________________ —
-0.005
'001 L L L t . 10-3 . 1 . . PP | 1 . 1 .
0 50 100 150 20.0 250 300 0.05 0.1 0.2 0.4
quadrature point H



3 1 Governing equations for solid mechanics (Lagrangian)

strong form

weak form

oP

LY JEOW
09X poté

u=u on Iy and P-N=t; on I}

P is first Piola-Kirchhoff stress tensor

find the trial functions u € H'(Qg) such that

/ to-vdS — P: (0v/0X) dX =
F

t
0 Qo

for all test functions v € HE (o)

Qo

po U -

Q

L

«—
«—
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vdX



# I Element-free approach to solve BVPs

Use two meshfree clouds: one for solution discretization (DoF) and
one for quadrature.

O DoF point
e quadrature point

o .. ‘Lo quad-to-dof ratio = 42

+ fine-scale tri-mesh

0}
(,o: .
()

What ratio of quad points to dof points is needed for stability
(coercivity of bilinear form)?



s | Patch test (linear consistency)

uniaxial tension

-— e
E=1.0
1 — —
vr=20.3
-— —

error > 5%



* " Consistency of discrete form (integration)

* For convergence of discrete approximation, need to ensure consistency of discrete and
continuous bilinear forms.

 Requires polynomial consistency of shape-function gradients (including quadrature).

* To obtain quadrature consistency, project the DoF shape function gradients to the
subspace of quadrature shape functions.

* Only performed once in a pre-processing step.

{¢r,1=1,...,N} DoF basis (shape functions)
{®d,K=1,...,M} Quadrature basis (shape functions)

v 2
<V¢I — Z aKCDK) dS} (L,projection)

K=1

Vor = argmin/

Q
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The projection can be written in terms of the dual or conjugate basis {®”}

(®g,®’) =06; bi-orthogonal

Vor=Y (Vor, @) =) (Vor, o)k
K K | |
\ J
Y |
covariant contravariant
components components

Can prove polynomial consistency up to the order of the precision of {®x}

Theorem: /quSIdQ:/pngIdQ forall p€Pr(Q)
Q Q

This ensures satisfaction
of the patch test.
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Replace the original bilinear form  a(u,v) = / Vu : CVvdQ
Q

symmetric (Bubnov-Galerkin).

with this modified bilinear form  a(u,v) = / Vu:CVodQ  Note: This modified bilinear form is st
Q

C

d(u,’v):/Q [Z(VU,(I)I)(I)I

I

J

a(u,v) = LZJ(VU,CI)I)C(VU,CI)J)/Qe
\

Z(V?}, (I)J)(I)J

ds

LD’ 40

)

|
GIJ
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Can show that G/ = (Grs)™*

where Gipj :/ ®;P;dQ isthe Gram matrix for the basis {®x}
Qe

Can show that & = GI7®, and &; =G’ “raising” and

“lowering” of indices

a(u,v) = ZG”(Vu, ¢;)C(Vu, @) = Z(Vu, dF)C (Vu, dg)
1,J K

\ )
|

Looks like a sum over
quadrature points.




40 Since G'7 = (Gy;)~! isdense:

Replace Gy with row-sum lumped version: Gf; =) Gy = diag{wk}
J

where recall WKZ/ch(X) ds2
Q

1 1
Then a(u,v) = a*(u,v) = Z E(VU, D) C(Vo,®x) where (GF,)™! = diag {E}
K
Can write @ (u,v) as | @"(u,v) = ZWK (Vu)g : C (Vo)
K
where | (Vu)x := b (V) B dO which has the form of a discrete derivative at a
WK Jo quadrature point K.

Our discrete bilinear form is now “sparse.”



« | Patch test (linear consistency)

pure shear

uniaxial tension

no projection

with projection

error < 1013



0 ‘ Example: plate with hole

uniaxial tension

«— —
«— —
— O |-
«— —
«— —
«— —

E=1.0

v=20.3

exact




s 1 Example: plate with hole

10}

102}

L, norm
of error

103 F

L, norm

no

correction .~
-~
-~

wo & o0

-
-~

8
¥
-

19 -~
-

with
correction
A 2
1
0.1 0.2 0.3 0.4

0.5

10"t

energy
norm

energy norm

no
correction

with

correction

0.1 0.2 0.3

0.4

0.5



Example




dof nodes

basis functions

stress field (vm)
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Nearly incompressible limit

« Can extend approach to handle nearly incompressible materials

* Use a “generalized” B-Bar/F-bar approach.

* Project dilatational portion of deformation gradient to smaller subspace, e.g. use

original DOF points as quadrature basis.

¢
¢
C

O DoF node and dilatational quadrature node
e deviatoric quadrature node
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Summary

1. Separate domain discretization from solution discretization (fine-scale domain
triangulation with coarse-scale solution discretization).

Example of discretization-based reduced order model.
Generation of meshfree weight functions using manifold geodesics.
New approach to quadrature for meshfree methods based on secondary basis.

Projected shape-function gradients using dual basis for polynomial consistency.
Observed optimal convergence rates for 2D elasticity.

Applicable to nonlinear solid mechanics too (plasticity).

© NOo A WD

Examples here were in H', also can be extended to H(div) and H(curl)



«» 1 Coercivity

For Lax-Milgram theorem (existence and uniqueness)

need coercivity of the bilinear form

There exists C such that a(u,u) > C||ul|* for all u € H}

quad-to-dof ratio = 1

® 0 00 00 00 00 00 00 00 000000 0000000000 00 00 090 00
©® 0000 00 00 00 00 00 00 0000000000 0000000000 000
®© 0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
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® 00000 00 00 0006000000000 000000000000 0090000
® 0 0000000000000 0006000000000 0000000900090 00

quad-to-dof ratio = 22

eigenvalue

10

10 ¢

107~/

minimum eigenvalue (nonzero)

structured DoF

unstructured DoF

@ stable
® low-energy mode

1 2 3 4 5

quad-to-dof ratio



