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Applications of interest

* nonlinear solid mechanics

* large deformation, plasticity

* implicit and explicit dynamics

* For plasticity, need quadrature points to carry material history.

* For efficiency in explicit dynamics, need to minimize number of
quadrature points

« Avoid artificial stabilization since, in engineering practice,
discretizations are typically in pre-asymptotic regime.



+ | Motivation for polyhedral discretizations

* more general discretizations tetrahedral dual cell
* hybrid meshing (tet-hex-poly)

e hex dominant meshing using frame fields
 cut-cell discretizations

e use of Voronoi tessellations hex-dominant meshing
* tetrahedral dual cells discretizations using frame field
cut-cell
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Challenges

* meshing
As poly elements become available in commercial software, meshing tools will follow.
Vorocrust mesher (Ebeida, M. et al.)

* shape functions

Many generalized barycentric coordinates (GBC) are now available, e.g. harmonic, maxent
(Hormann and Sukumar, 2018)

e quadrature

Several approaches for consistent and stable quadrature schemes, including VEM and other
gradient projection methods.

* stability

Depends on quadrature scheme; behavior in near-incompressibility regime (plasticity)

» Beirao da Veiga, et al., 2014, “Hitchhiker’s Guide to VEM”
 Bishop, J.(2014). "A displacement-based finite element formulation for
general polyhedra using harmonic shape functions." IJNME 97: 1-31.



Harmonic shape functions

Harmonic functions minimize the Dirichlet energy given by
the following functional:

J($) = %/Q V¢ VedQ with ¢ € H'(Q)

The minimizer of this functional satisfies the following

variational problem: . _
find ¢ € H () with ¢ = ¢ on T, such that

/ Vo - Voudf)
Qe

for all test functions v € Hj (Q)

The strong form of this variational problem is given by:

V20 =0 in Qe with ¢ =¢ on I,



! Harmonic shape functions

VZ¢r =0
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Harmonic shape functions

VerBED

Z¢I(x) =1 partition of unity

! Can also do higher-order

reproducibility.
ZXI ¢1(x) =x  linear reproducibility
I



» I Governing equations (total-Lagrangian formulation)

i
strong form  gp ) — [ -
a—X:I:pOfu, tO: O\\::
— Q% ‘-\\—>
u=u on Iy and P-N=t; on I} n O e x
r TR
P is first Piola-Kirchhoff stress tensor A
e
T
weak form  find the trial functions w € H'(Qg) such that
/ to-vdS — P: (0v/0X) dX = poth-vdX
1_‘6 Qo Qo

for all test functions v € HE (o)
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Governing equations for small strain elasticity

strong form g_a I+ f

0 u=u on 'y, and en=t on I}
e

o = Ce, where € := sym (Vu) (linear elastic)

Jau, oy >0 suchthat aje:e < e:(C(x)e) < aye:e Ve  (uniform ellipticity)

weak form find the trial functions u € H'(Qg) such that

/a:(@v/@x)dQ:/f-de—l—/ t-vdl
Q Q Iy

for all test functions v € H{ ()
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Classical quadrature points

If the polyhedron is “star convex”, can use a simple sub-
triangulation to create quadrature points.

quadrature points X g
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Integration consistency

Divergence theorem states that: / VordQ = / oy N dI'
Qe | S

In discrete form: Y wgVorlk =Y wip¢tNy  I=1,...,N,
K L

gradient value at
quadrature point K

* For non-polynomial shape functions, this will not be satisfied in general.

« This will result in a lack of consistency (failure of the engineering patch test).



Shape function derivative correction

Project the shape function derivatives to satisfy the integration consistency condition.

Maintain the reproducing properties of the derivatives.

Minimize the least-squares difference between the new derivatives and the old.

Only performed once during simulation (pre-processing step).

v¢r1f|11r1€R3 > wg (Vor|x — vCZ5I|K) subject to the constraints  »_wx Vor|x — Y wp ¢r|n N =0
IlK K L

This constrained optimization problem can be solved using the method of Lagrange multipliers:

L(Vor|k,A) ZUJK Vorlk —Vor|k) N <ZUJKV¢IK ZwL¢ILNL>

Bishop, J. (2014). "A displacement-based finite element formulation for general
polyhedra using harmonic shape functions." [UNME 97: 1-31.



« | Shape function derivative correction

original bilinear form a(u,v) :/ Vu : CVovdS
Qe

discrete form a"(u,v) := Z’wKVu’K : CVolk
K

replace with this modified bilinear form @"(u,v) :=) wxVu|k : CVv|x
K

Note: This modified bilinear form is still
symmetric (Bubnov-Galerkin).



s 1 Veritication: elasticity patch test

uniaxial tension

«— —
«— —
E=1.

«— —
) vr=20 R
«— —

011

1.1
il.O
0.9

(a) (b)

Bishop, J.(2014). "A displacement-based finite element formulation for general
polyhedra using harmonic shape functions." [UNME 97: 1-31.



16 ‘ Verification: cantilever beam

von Mises
stress

Voronoi mesh

Bishop, J.(2014). IUNME 97: 1-31.
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71 Nonlinear example

conventional

compressible neo-Hookean p0|yhedra| mesh hexahedral mesh

material 10,000
5,000i
A
o=L@FFT 1)+ 21 0
J InJ )
. von Mises stress
© X

(b)

(a)

By

Bishop, J. and N. Sukumar (2020). "Polyhedral finite elements for nonlinear solid mechanics using tetrahedral
subdivisions and dual-cell aggregation." Computer Aided Geometric Design 77: 101812
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Point of departure: integration consistency

Project shape function gradients to span of shape function basis.
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Point of departure: integration consistency

* Project shape-function gradients to a space that is “easy” to integrate.
* VEM projects shape-function gradients to polynomial space.
* Instead here, project gradients to space of shape functions: {¢5,I=1,...,N,}

2
Vo := arg min/ <V¢I — Zajqu) ds? (L, projection)
Qe

J

Note: Could also project to any other
convenient basis, e.g. piecewise constant.
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The solution can be written in terms of the dual basis {¢”}

(61,07) =06/  bi-orthogonal |

Vor=> (Vér,0.) 6" =) (Vor,¢”) ¢,

J |\ J J | J
| |
covariant contravariant
components components |

Can prove polynomial consistency up to the order of the precision of {¢;}

Theorem: / pVordQ :/ pVordQY forall pePr(Qe) This ensures satisfaction
Qe Qe of the patch test.
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Replace the original bilinear form

with this modified bilinear form

a(u,v) = Z(Vu, br)

1,7

a(u,v):/ Vu : CVodf)
Qe

a(u,v) :/ Vu : CVuvdQ
Qe

C

C(Vo, b)) /Q o167 dO
Jo.

> (Vv ¢5)¢’

J

)

|
GIJ

Note: This modified bilinear form is still
symmetric (Bubnov-Galerkin).

ds2
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Can show that G/ = (Grs)™*

where Grj = / ¢rdsdQ isthe Gram matrix of the element of category O.
Qe
a(u,v) =Y Gr;(Vu,é1)C(Vv,¢,)
1,J

Still need to show that a(u,v) is coercive.

Also, for nonlinear problems, need to “lump” G to quadrature points.

What are the quadrature points?
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Going to replace Grj with row-sum lumped version:

GE = Z Gy = diag{wr} where |, = dr(x)dQ
J Qe
1
Then a(u,v) — @ (u,v) = Z — (Vu, o) C(Vv, dpK)
K VK
Can write @ (u,v) as a” (u,v) = ZwK (Vu)g : C(Vo)g
K
— 1

where (Vu)g := o (Vu)px df2 which now has the form of a discrete derivative at a

Qe

quadrature point K.

polynomial consistency properties as the original derivatives.

Can prove that these discrete/projected derivatives have the same reproducing and




VRen

— = 0.201 — = 0.147 ——0110 — =0.1 ——0138 ——0209
A 0.20 A 0. 1 A 0.196 1 1
A = area
quadrature weights ZUJK =A WK = / O K (x) dS)
K -
N _ ~15
max error in discrete derivative reproducibility mf?XZ(V¢I)K =9x10 :
T
max ;(WI)KXI —I=5x10"" ‘

max error in integration consistency = 8 x 107 1°



» | Quadrature-revisited

consistency

Start with reproducing conditions ZXK Or(x) =x linear
K
Integrate both sides (1) / ZXK dre(x) dQ = / < dO
Q. 7 Q.
(2) ZXK/ qbK(x)dQ:/ x df)
K e Qe
Define quadrature weight as | Wk = O (x)dQ2 | then ZWK XK
Qe %
XK

Quadrature points are just Xg

Quadrature
points are now

just the vertices.



26 I Quadrature

Also, note that ;WK ;/Qegb;((x)d /Qe%;gb;((x)d /Qem 1%

Now have a second-order integration scheme that can
integrate linear functions exactly.

ZWK:V and ZWKXK:/ x df)
K K Lo

Can extend to higher-order integration using higher-order
reproducing conditions.
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Veritication: quadrature

error = ‘/f —Zwifi

1072

103 ¢

error

104 F

10°F

107

quadrature error

element size, h
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Verification examples: linear elasticity
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Verification: elasticity patch test

uniaxial tension

4—

4+—

4—

4—
4—

E=1.0

v=20.3

—

—>

—

—
—

hexagon mesh

subtriangle quadrature

— T

projection based quadrature

- e




30 ‘ Verification: elasticity, hole-in-plate tension

mapped hexagon mesh

von Mises stress invariant
uniaxial tension
«— —
«— —
«— —
— Q .
«— —
«— —
«— —

IV AN L/
Voronoi -

« exact tension prescribed
corresponding to infinite plate

« plane strain

« quarter symmetry model used

E=1.0
v=20.3




" I Verification: elasticity,

L, norm

107

L, norm

E —O-- 1 pt per sub triangle
[ —O~ 3 pts per sub triangle
| —©— projection

—_

hole-in-plate tension

energy norm

10°

energy norm
>
\S]

10~

—EO-- 1 pt per sub triangle
—QC— 3 pts per sub triangle
—O— projection

1073

Optimal rates of convergence

h

10~
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Nonlinear solid mechanics, examples
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Application example: hyperelastic, hole-in-plate

uniaxial extension

— — quad mesh

mapped hexagon mesh

4+— e < N N N N N N N W W W W W . |
“— —
«— —

* plane strain
* quarter symmetry model used

::::::

\\\\\

compressible neo-Hookean material
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35 ‘ Application example: elastic-plastic, hole-in-plate

yield surface  f(0,8) = ¢(a) —0y(&") =0

1 1/2
P(o) = {5 (Jor — 02> + o1 — 03]* + |02 — 03|2)}

plastic strain field

load vs. extension
25

quad mesh
O poly mesh

““““

..............

900
00

20

15}
load
10}

0 5 10 15 20 25 30
extension

(Use F-bar methods for inf-sup stability.)



! Calculation of (Vor, ¢x)

« Currently solving for derivative projection using a sub-
triangulation and FEA.

« Can also use Green's identities to calculate these if shape
functions are harmonic.
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Summary

1. Presented a generalized method for “correcting” shape function
derivatives to satisfy integration consistency.

2. Observed optimal convergence rates for verification tests in 2D elasticity.
3. Presented nonlinear examples in solid mechanics

4. Exploring use of Green'’s identities for calculating gradient projections of L
harmonic shape functions.



