
Exceptional service in the national interest

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and
Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S.

Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

Pyomo
Optimization Beyond Modeling

2022 Tri-lab Advanced Simulation & Computing Sustainable
Scientific Software Conference (ASC S3C)

May 24-26, 2022

Presenter: Miranda Mundt – mmundt@sandia.gov
Coauthors: Michael Bynum, William Hart, Bethany Nicholson,

 John Siirola

SAND2022-6985CThis paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in
the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

mailto:mmundt@sandia.gov

Introduction

Pyomo (Python Optimization Modeling) is a Python-based open-
source software package that supports a diverse set of
optimization capabilities for formulating, solving, and analyzing
optimization models.

Pyomo supports a wide range of problem types, including:

• Linear programming

• Quadratic programming

• Nonlinear programming

• Mixed-integer linear programming

• Mixed-integer quadratic programming

• Mixed-integer nonlinear programming

• Stochastic programming

• Generalized disjunctive programming

• Differential algebraic equations

• Bilevel programming

• Mathematical programs with equilibrium constraints

Can be found on pypi.org, anaconda.org, and GitHub

2

History of Pyomo

• First released in 2008 as the Coopr
software library

• Rebranded as Pyomo around 2011

• Moved to GitHub in mid-2016

• Steady growth in usage and popularity
ever since

3

Outline

4

• Challenges
• Team composition
• Software dependencies (upstream and downstream)
• Automation tools
• Organization policy requirements

• Resolved Challenges
• Team composition
• Downstream dependencies
• Automation tools
• Competing priorities – commercial and research interests

• Unresolved Challenges
• Funding
• Open-source concerns
• Upstream Dependency Updates

Challenges

5

Team Composition

• Core development team (~10 people) spans
national labs, industry, and academia
• 81 total contributors on GitHub

• Team is geographically dispersed over
many time zones
• Dev meetings rarely include more than 5

members of the core dev team

• Development team is constantly changing
• Few consistent contributors for longer than a

few years

• Competing goals and priorities
• Developers of dependent software projects

need stability
• Classroom users need documentation,

examples, and easy installation
• Research users need fast development and

API flexibility

6

Software Dependencies

• Dependencies on packages which are
not regularly maintained:
• PyUtilib (a set of python utilities)
• Nosetests (testing driver)

• Frequently updating optional
dependencies causing:
• Higher technical debt
• Unreliable testing infrastructure

• Staying updated on new Python versions
• End-of-life for Python 2
• API changes in Python 3

• Institute for the Design of Advanced Energy
Systems (IDAES)
• Relies on Pyomo as part of its core capability

• Other high-traffic or high-impact open
source users, interfaces, and research
purposes
• Government stakeholders in DOE/OE,

DOE/NA22, NOE/NNSA, DOE/FE, EPA, etc.
• Optimization solvers (cplex, ipopt, gurobi, etc.)
• Energy system modelers (IDAES, Calliope)
• COVID-19 Modelers
• Research through universities and LDRDs

Upstream Dependencies Downstream Dependencies

Automation Tools

From 2016 to 2019, Pyomo simultaneously
used three different platforms for automated
testing:

• Jenkins
• Linux (RHEL)
• Cpython and Pypy (module system)
• Integration and benchmark testing
• Licensed optimization solvers

• TravisCI
• Linux (Ubuntu)
• Cpython and Pypy (anaconda)
• Integration testing

• Appveyor
• Windows
• Cpython (miniconda)
• Integration testing

This introduced heavy maintenance debt, and
tests for a single Pull Request took an average
of 6 hours to fully complete.

8

Organizational Policy Requirements

9

• Funding
• Pyomo has never had a source of direct funding supporting maintenance, CI,

user support, documentation, etc.
• Pyomo was seeded with LDRD funding. Subsequent support has been indirect

funding where Pyomo developments supported research capabilities or specific
national security applications

• Open-source at an NNSA national lab
• In early days of Pyomo, the repository was hosted internally at Sandia making it

very challenging to co-develop with external collaborators
• Pyomo moved to GitHub in 2016 – which helped with these issues
• New concerns about contributing to or installing open-source software have

appeared within the NNSA since 2016 – causing much confusion

Resolved
Challenges

10

Teaming

• Moved Pyomo development to GitHub in 2016
• Easier for non-Sandian developers to

contribute/access new features
• Adopted “fork  branch  pull request” workflow

for all development
• Encourage, support, and promote contributions

from the community

• Weekly developers call
• All are invited
• Designated time for any Pyomo contributor to raise

issues/questions with the core dev team

• Established a Pyomo Management Committee
(PMC)
• Developed policies for resolving conflicting

development priorities
• “vote by email” strategy for geographically dispersed

team

Separation from Outdated / Not Maintained Dependencies

Build / Install Dependencies
Prior to Pyomo 6 series:

• PyUtilib (no active development;
maintained by core Pyomo team; many
capabilities now exist in Python)

• Enum34
• Ply
• Six

Starting with the Pyomo 6 series:
• Ply

Testing Dependencies
Prior to Pyomo 6.3.0:

• Nosetests (last update: June 2015)
• Specifically designed nosetests plugins for:

categories, dynamic test generation
• Fails for Python 3.10 (due to use of

removed features)

Starting with Pyomo 6.3.0:
• Pytest (regularly maintained)
• Built-in support for categories and dynamic

test generation
• Works for all supported versions of Python

12

Downstream Software Dependencies

• Close collaboration with IDAES core
developers

• Weekly development meetings to align
priorities

• Sync release schedules
• IDAES determines release date
• Pyomo releases 1-2 weeks prior
• Release candidate is tested against IDAES

before being officially released

Pyomo has interfaces into many open source
and commercial solvers

We extensively test these interfaces,
including collaborating with commercial
solvers for access to licenses

13

Automation Tools

14

November 2019 November 2020

Total time: 1-6 hours

Total coverage: ~70%
• Jenkins
• Linux (RHEL)
• Cpython and Pypy (module system)
• Integration and benchmark testing

• TravisCI
• Linux (Ubuntu)
• Cpython and Pypy (anaconda)
• Integration testing

• Appveyor
• Windows
• Cpython (miniconda)
• Integration testing

• GitHub Actions
• Linux (Ubuntu), Windows, MacOS
• Cpython and Pypy (pip and anaconda)
• Integration testing for PRs
• Automatic wheel creation for distribution
• Local fork/branch testing

15-60 minutes

~80%

Competing Priorities – Commercial vs. Research

15

• “fork  branch  pull request” workflow greatly improved code
stability and development speed
• Automated testing is done on code contributions BEFORE code is merged

into the main branch
• Every code contribution is reviewed by at least one other developer
• Codecov check requires automated tests to cover a certain percentage of

the lines changed for every pull request

• Pyomo.contrib
• Designated space for new features/extensions with less rigorous

requirements around documentation, testing, and backwards compatibility

• Recognition that developer time is finite
• Stakeholder funding dictates priority – so some tasks fall by the wayside

Unresolved
Challenges

16

Funding

Successes

• Pyomo funding through IDAES
• Allows developers to create new

functionality and maintain existing
capabilities

• LDRD Investments
• Allow extensions of Pyomo
• Adversarial optimization (PAO)
• Optimization and machine learning (OMLT)

Continued Issues

• No direct funding for required activities
such as:
• Performance bottlenecks
• Modernizations
• Refactoring / redesigns of antiquated systems
• Modern-age hardware and infrastructure

upgrades

• Documentation & user support

17

Open-Source Concerns

Many of the Pyomo developers work within
Sandia National Laboratories. As a result,
they must consider concerns related to
open-source software to balance:

• Risk (security, failure, etc.)

• Technical debt

• Value added

The evolving guidance for NNSA and Sandia
open-source packages creates uncertainty
about the future of Pyomo and its
management, particularly with regards to
multi-institutional engagement.

18

Upstream Dependency Updates

While Pyomo only has one required
dependency, there is a large list of optional
dependencies which are utilized outside of
the “core” Pyomo offering.

Our integration tests frequently break due to
constantly changing:

• GitHub Action Images
• Anaconda Environments
• Optional dependency updates

This is both positive and negative. It ensures
that we stay current, but causes lots of
unintentional churn in our testing system.

19

Conclusion

20

