

Emissions Abatement of Pepper Roasting Utilizing a Concentrating Solar Tower Thermal Heat Source

ES2022-81495

Kenneth M. Armijo, Aaron Overacker, Hector Mendoza, Dimitri Madden, Daniel Ray, Luis Garcia-Maldonado, Kenneth I. Armijo & Randy Montoya

Sandia National Laboratories, Albuquerque, NM

2022 ASME ES2022 Conference

July 2022, Philadelphia, PA, USA

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

SAND2022-XXXX

Agenda

Solar Roasting Challenges

- Carbon emissions abatement utilizing concentrating solar power (CSP) heating for culinary industrial process heat applications of roasting peppers.
- Arid regions with high energy demand for cooking, traditional "hot-box" cookers or solar ovens employed w/solar reflective surfaces.
- Limited solar thermal cooking methods for roasting temps $> 450\text{C}$.

Overview

- Roasting & Emissions
- Solar Tower Experimental Setup
- Experimental Facilitation
- Analysis & Results

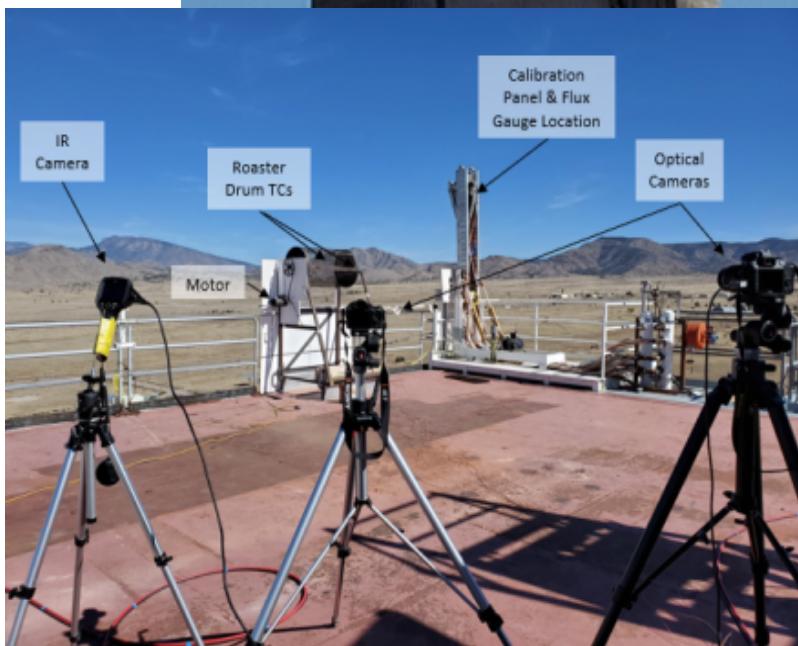
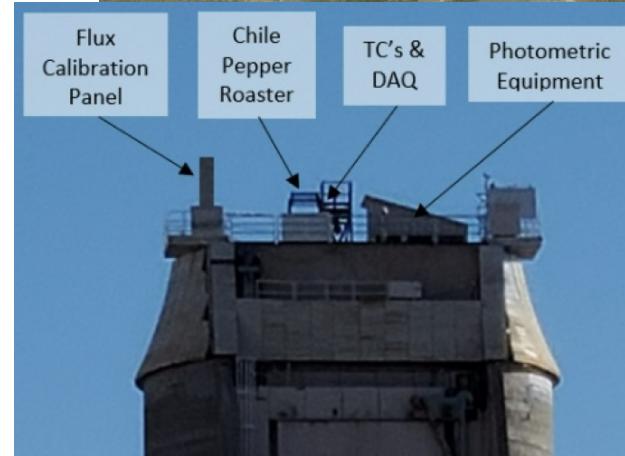
Conclusions & Future work

Food Roasting & Peppers

Overview

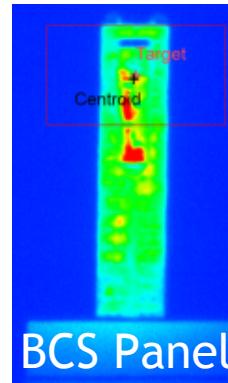
- Traditional Capsicum Annum "Chile" pepper, typically roasted for a variety of cultural food.
- Roasting of Chile peppers typically preferred for flavor preservation & culinary preparation for processes that release natural flavor compounds.
- Fruits and vegetables can contain over 80% moisture, cooking/dehydration down to 5-10% moisture levels can be energy intensive
- Traditional concentrated solar cookers can achieve temperatures of up to 300°C, and include thermal energy storage (TES) for both sensible and latent forms

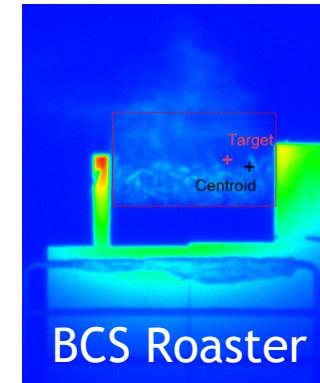
Capsicum Annum "Big Jim" Chile Peppers

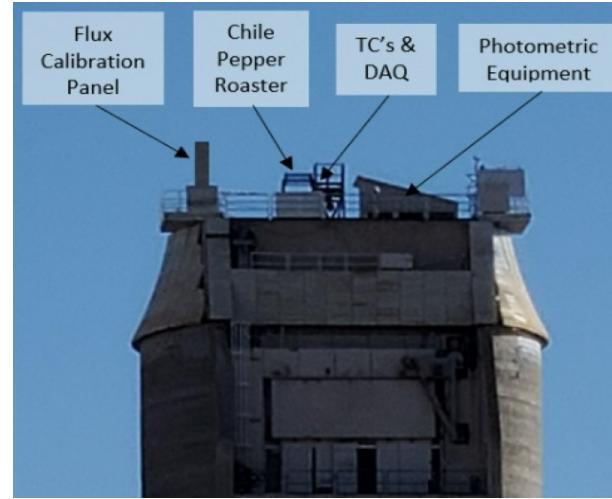


Food Type	Approx. Cooking Temp.	Ref.
Rice, Lentils, Potatoes	43°C	Prande et al., 1987
Meat	120°C	Mussard et al., 2013
Coffee	125°C	Kamboj et al., 2017
Cashews	130°C	Lainas et al., 2016
Almonds	146°C	Lainas et al., 2016
Wheat	180°C	Schoeman et al., 2019
"Chile" Peppers	550°C	Current Meas., 2021

Armijo Farms

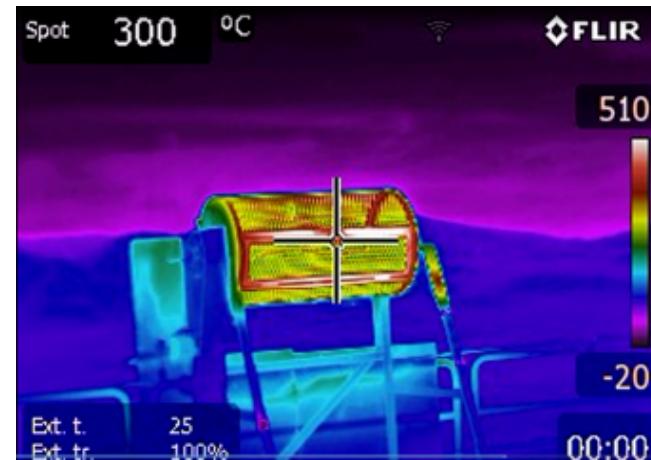
Experimental Setup


- Sandia National Solar Thermal Test Facility (NSTTF)
 - 35-42 heliostats used (of 218 total)
 - ~200 ft tall tower with 6 MW_{th} potential
- Standard pepper rotational roasting drum (0.6 m diameter by 1.2 m length)
- RSLE insulation used to protect roaster motor and calibration system lines and DAQ
- Each roast contained ~10 +/- 0.01 kg determined based on load constraints of system motor and chile roasting best practices for drum size.
- State properties calculated at inlets/outlets along both hot/cold legs of pilot scale plant

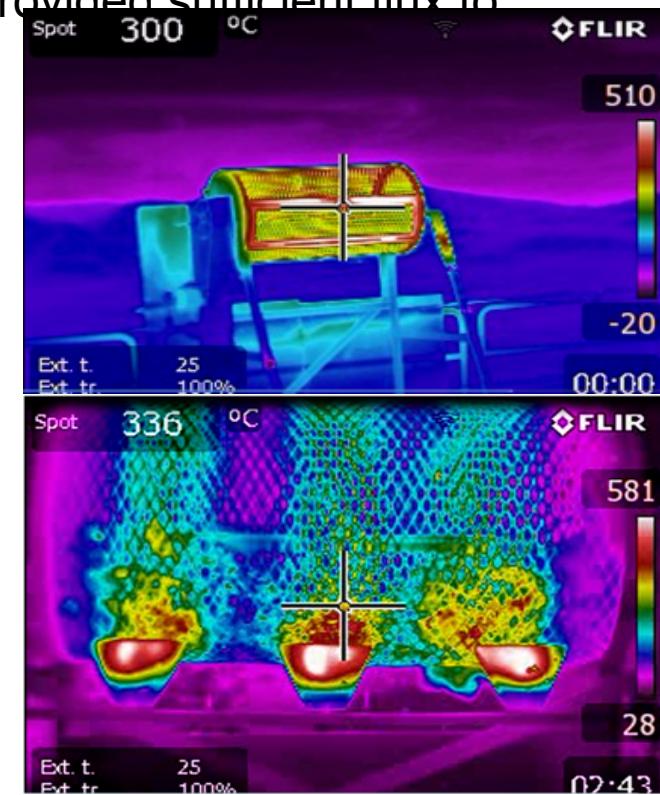

Preliminary CST Calibrations


- Preliminary TC drum roaster measurements calibrated with IR.
- Initial flux and No. of Heliostats determined based on ground-based IR measurements.
- BCS calibration panel using Kendall, temp. compensated radiometer.
- BCS Centroid software used for flux profile averaging: For Panel and Roaster.
- 550-600°C target temperatures equated to 35-42 heliostats for 12-18 W/cm² flux.
- Rotational speed determined based on best practices for determining char profile

BCS Panel


BCS Roaster

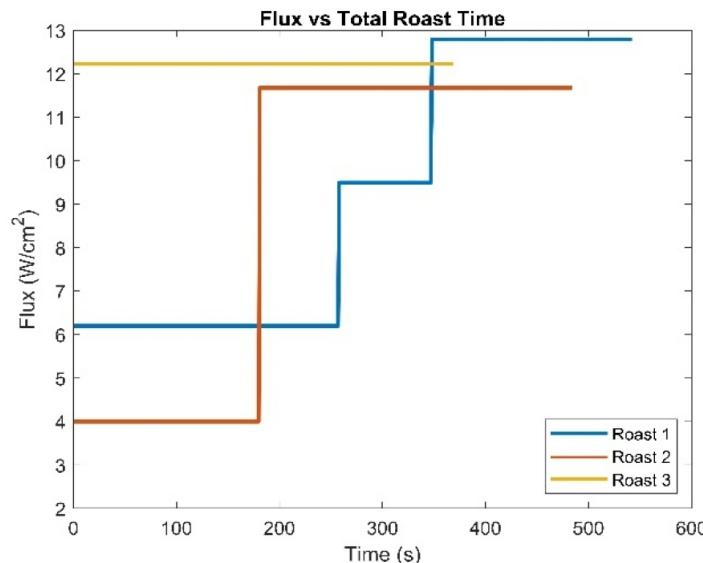
Ground-Based Traditional Roasting


- Results indicate receiver peak flux increases for uniform flux distribution & tube geometry.
- Weight scale used to assess volume of propane used over time, where with Temp. convolution total emissions could be determined.
- Burners roasted in more surface, localized heating manner.
- IR values found to vary between approximately 580°C at the outer surface of the drum to approximately 200°C within the bulk pepper volume between burners.

Tower-Based Roasting

- Liquid receiver design with tube size of $\frac{1}{2}$ NPS Sch.10 billboard receiver orientation.
- Pressure drop allowed will range from 0.1 bar/m to 0.5 bar/m resulting in expected mass fluxes between 3000 kg/m^2 and 10000 kg/m^2
- Resulting heat transfer coefficients range from 8,000 to 20,000 $\text{W/m}^2\text{-K}$, chloride salts ranging from 3,000 to 9,000 $\text{W/m}^2\text{-K}$, and sodium ranging from 30,000 to 60,000 $\text{W/m}^2\text{-K}$.
- Nitrate salt receivers can potentially reach between 85% and 95% efficiencies & ternary chloride salt will be limited to between 80% and 90% efficiency.
- Sodium receiver efficiencies between 90% and 95% provided sufficient flux to receiver.

Comparisons & Results


- Six roasts total were conducted for data collection, three with conventional propane burner and three using CST.
- Second roast used unwetted chile, so a shorter test duration was required at a lower flux.
- By final roast, an optimal flux level for roasting had been determined & used for duration of roast. This accounts for the shortened roast duration between subsequent CSP experiments.

Propane Summaries

	Roast Duration (Seconds)	Mass loss of Propane Tank (kgs)
Propane Roast 1	251	0.527
Propane Roast 2	195	0.426
Propane Roast 3	256	0.512

Overall Roasting Summaries

	Maximum temperature (°C)	Average Solar Flux (W/cm ²)	Test Duration (Seconds)
Baseline Propane Roast	581	N/A	180
CSP Roast 1	464	9.123	542
CSP Roast 2	510	8.823	484
CSP Roast 3	490	12.230	369

Comparisons & Results Cont'd

- Results found that roasting peppers with CSP facilitated approximately 26 MJ of energy that abated approximately 0.122 kg CO₂/kg peppers for a 10 kg bag.
- With CSP emissions could be abated up to 0.131 kg CO₂/kg.
- NM produced 6.169 million kilograms of Chile peppers in 2020, which amounts to potential abatement of 808,139 kg CO₂ (~1.78M lbs CO₂).
- Results determined 2.99 kg-CO₂/kg-propane based on EIA value of \$1.92/gal. of residential propane, cost of fuel abated could result in financial impact of 2.28 million USD.

$$Energy \text{ (kWh)} = Flux \left(\frac{kW}{cm^2} \right) * area \text{ (cm}^2\text{)} * duration \text{ (h)}$$

$$Emissions \left(\frac{kg \text{ CO}_2}{kg \text{ chile}} \right) = \frac{Emissions \text{ (kg CO}_2\text{)}}{chile \text{ bag mass (kg)}}$$

	Average Solar Flux (W/cm ²)	CSP Roast Emissions (kg CO ₂ /kg chile)
Roast 1	9.123	0.0304
Roast 2	8.823	0.0263
Roast 3	12.230	0.0278

$$Emissions \text{ (gCO}_2\text{)} = Energy \text{ (kWh)} * \frac{38g \text{ CO}_2}{kWh}$$

	CSP Roast Emissions (kg CO ₂ /kg chile)	Propane Roast Emissions (kg CO ₂ /kg chile)	Emissions Abated (kg CO ₂ /kg chile)
Roast 1	0.0304	0.1576	0.1272
Roast 2	0.0263	0.1274	0.1011
Roast 3	0.0278	0.1648	0.1370

Culinary Quality Survey

- Likert scale participant survey conducted pertaining to varying qualities between CST-roasted peppers versus traditional, propane-roasted peppers.
- Charring profiles for all propane-based, and solar tower experiments were relatively similar
- Questions ranged across flavor, smell, peel-ability, texture
- On average, the surveyed respondents favored the solar tower-roasted peppers over the propane-roasted peppers by 18% for flavor, 2% for peel-ability and 12% for smell.
- Post-test texture however, respondents actually favored the propane-roasted peppers by a small margin of 4%.

	Not Very					Very				
	Satisfied - 1	Satisfied - 2	Neutral - 3	Satisfied - 4	Satisfied - 5	Satisfied - 1	Satisfied - 2	Neutral - 3	Satisfied - 4	Satisfied - 5
Solar Tower-Roasted: Flavor	0%	0%	0%	21%	79%					
Propane-Roasted: Flavor	0%	7%	7%	57%	36%					
Solar Tower-Roasted: Smell	0%	7%	14%	50%	21%					
Propane-Roasted: Smell	0%	21%	21%	29%	14%					
Solar Tower-Roasted: Peel-ability	0%	7%	36%	21%	29%					
Propane-Roasted: Peel-ability	7%	14%	0%	50%	29%					
Solar Tower-Roasted: Texture	7%	0%	21%	50%	21%					
Propane-Roasted: Texture	0%	7%	21%	43%	29%					

Conclusions & Future Work

- Solar tower chile pepper experiment conducted as comparison against traditional propane gas roasting.
- Overall results suggest that comparable solar roasting to traditional propane roasting is possible up to flux levels of 18.7 W/cm² for 3-4 minute durations.
- CSP roast had a more uniform temperature roast distribution.
 - Use of water cleaning added more time though improved uniform volumetric heating
- Based on calculated 2.99 kg-CO₂/kg-propane and EIA value of \$1.92/gal cost of fuel abated could also result in a financial impact of 2.28 million USD.
- NM produced 6.169 million kilograms of Chile peppers in 2020, which amounts to potential abatement of 808,139 kg CO₂ (~1.78M lbs CO₂).
- Propane-based experiments generally included more charring than the solar-based experiments
- Survey results overall appeared to favor CST-roasted peppers for its ability to have a cleaner, less smokey flavor, while allowing an easier, more timesaving peeling process.
- Future work will be required to obtain a larger statistical sampling of survey

Acknowledgements

This work is funded in part or whole by the U.S. Department of Energy Solar Energy Technologies Office under DOE-SBV-86243.

Disclaimer: report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

kmarmij@sandia.gov

Thank you.