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Automatic Discovery of Implementation Rules for Fast GPU + MPI Operations

Fast libraries for heterogeneous

architectures

«  Mapping computation onto processors » Reduced developer effort for performance on
* Choosing communication strategy
« Unpredictable performance interaction

* Prototype automatic tooling for discovering

important design decisions

new systems

linear algebra operations

ey Challenge

Large Design Space

Extract performance insight

Express operation as a directed acyclic graph
(DAG) of operations

Monte-Carlo Tree Search (MCTS) to identify and
explore regions of interest

Empirical benchmarking
Feature vector for each implementation
Decision tree training for design rules

Initial results pass “sniff test,” working on broader experiments and quantitative evaluation

« Maintain human provenance of library design
* e.g. Modernize Tpetra MPI+GPU distributed




s 1 Libraries are built on existing lower-level primitives

* Qur libraries (and applications) are
combinations of existing library and
vendor operations

« and code to coordinate them Application Code

. CUDA-Aware MPI .
&

Operating System

« and code to implement custom behavior
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+ 1 Libraries are built on existing lower-level primitives

* Qur libraries (and applications) are
combinations of existing library and
vendor operations

« and code to coordinate them Application Code

. CUDA-Aware MPI )

« and code to implement custom behavior

- Performance changes at many layers for
new platforms

*  new hardware,
* new CUDA version,

* new OS version, Operating System
- etc




s | Prototype Implementation in C++ and Python
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6 | Prototype Implementation in C++ and Python
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.. DAG . MCTS |
DAG of MCTS searches
operations order of operations
describes design and resource
space assignment
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7 | Prototype Implementation in C++ and Python
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Class Labels &
o Feature Vectors !
MCTS searches Sequence-to-vector
operations order of operations  transformation for labels
describes design and resource
Space assignment
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: | Prototype Implementation in C++ and Python

_______________________________________

B before C
D, C same stream
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Class Labels & Decision
' Eeature Vectors 7 o Aree o 0. DesignRules -
MCTS searches Sequence-to-vector Decision tree training to identify
operations order of operations  transformation for labels  discriminating design space features
describes design and resource
Space assignment

C++/ CUDA / MPI Python / scikit-learn




o | Decision Tree Training to Determine which Rules Discriminate
between Classes

y1 before CES-b4-PostSend

samples = 2036
classes: [ 33.3% 33.3% 33.3% ]

False

aitRecv before yl
samples = 1088
classes: 420.2% 54.7% 25.1% |

r, vl diffetyat streams
’ ysamples 520 samples = 568
classes: [ 0.0% 50%% 49.7% ] classes: [ 37.8% 58.5% 3.6% |

y |

‘ classes: [ﬂ.ﬂ% lﬂﬂ.ﬂ% ﬂ.ﬂ%]

« sync pack beforey, I
« WaitRecv before y, |
* Y_Yrin same stream

 y,and pack in different streams
« Pack, theny,, then sync pack

Pack before yl
samples 396

classes: [ 1.0% 99.0% 0.0% ]

Each path through the tree is a set of design rules that define a performance class I



0 I Vision for this work

Current
« C++ MCTS implementation for MPI/CUDA codes with multiple streams
* Prototype feature-vector and decision tree training using SciKit in Python
* Available at github.com/sandialabs/tenzing

Upcoming
* Applying initial results to Tpetra distributed linear algebra package in Trilinos

Future Explorations
« Identify unexpected performance effects on target platforms (“performance bugs”)
«  What to do as communication / computation are more tightly integrated

Summary
* Represent CUDA+MPI operation as DAG

« Automatically generate human-interpretable rules for library design
« Maintain human provenance of implementation (no “black boxes”)




