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Automatic Discovery of Implementation Rules for Fast GPU + MPI Operations

• Prototype automatic tooling for discovering 
important design decisions
• Reduced developer effort for performance on 

new systems
• Maintain human provenance of library design
• e.g. Modernize Tpetra MPI+GPU distributed 

linear algebra operations
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Key Challenge How it’s Done
Large Design Space • Express operation as a directed acyclic graph 

(DAG) of operations
• Monte-Carlo Tree Search (MCTS) to identify and 

explore regions of interest

Extract performance insight • Empirical benchmarking
• Feature vector for each implementation
• Decision tree training for design rules

• Fast libraries for heterogeneous 
architectures
• Mapping computation onto processors
• Choosing communication strategy
• Unpredictable performance interaction

Initial results pass “sniff test,” working on broader experiments and quantitative evaluation



Libraries are built on existing lower-level primitives

• Our libraries (and applications) are 
combinations of existing library and 
vendor operations
• and code to coordinate them
• and code to implement custom behavior
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Libraries are built on existing lower-level primitives

• Our libraries (and applications) are 
combinations of existing library and 
vendor operations
• and code to coordinate them
• and code to implement custom behavior

• Performance changes at many layers for 
new platforms
• new hardware,
• new CUDA version,
• new OS version,
• etc.
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Prototype Implementation in C++ and Python5
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Prototype Implementation in C++ and Python6
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Prototype Implementation in C++ and Python7
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Prototype Implementation in C++ and Python8

DAG MCTS
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Decision Tree Training to Determine which Rules Discriminate 
between Classes
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Each path through the tree is a set of design rules that define a performance class

• yL and pack in different streams
• Pack, then yL, then sync pack

• sync pack before yL
• WaitRecv before yL
• yL, yR in same stream



Vision for this work

• Current
• C++ MCTS implementation for MPI/CUDA codes with multiple streams
• Prototype feature-vector and decision tree training using SciKit in Python
• Available at github.com/sandialabs/tenzing

• Upcoming
• Applying initial results to Tpetra distributed linear algebra package in Trilinos

• Future Explorations
• Identify unexpected performance effects on target platforms (“performance bugs”)
• What to do as communication / computation are more tightly integrated

• Summary
• Represent CUDA+MPI operation as DAG
• Automatically generate human-interpretable rules for library design
• Maintain human provenance of implementation (no “black boxes”)
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