SAND2022-6923C

This paper describes objective technical results and analysis. Any subijective views or opinions that mightlbelexpressed}in|
the paper do not necessarily represent the views of the U.S. Department of Energy or the United States'Government.

Sandia
National
Laboratories

Machine Learning for
CUDA+MPI Design Rules

his work is supported by the U.S. Ei
Department of Energy, Office of Science,
Office of Advanced Scientific Computing f
TResearch, Scientific Discovery through =
| Advanced Computing (SciDAC) program
~ through the FASTMath Institute. ="+
. This research used resources of the '+
_National Energy Research Scientific
Computing Center (NERSC), a U.S.
Department of Energy Office of Science
User Facility located at Lawrence
Berkeley National Laboratory, operated
under Contract No. DE-AC02-05CH11231
using NERSC award ERCAP0019623.

s -
FASTMATH

©ENERGY NISH

Sandia National Laboratories is a
multimission laboratory managed
and operated by National Technology
& Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of
Honeywell International Inc., for the
U.S. Department of Energy’s National
Nuclear Security Administration under
contract DE-NA0003525.

SAND_XXX

Carl Pearson, Karen Devine, Aurya Javeed

Sandia National Labs

PDSEC 2022

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering [SolutionsfofiSandia,|LLC, alwhollylowned!
subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administrationfundercontract DE-NA0003525.

Automatic Discovery of Implementation Rules for Fast GPU + MPI Operations

Fast libraries for heterogeneous

architectures

« Mapping computation onto processors » Reduced developer effort for performance on
* Choosing communication strategy
« Unpredictable performance interaction

* Prototype automatic tooling for discovering

important design decisions

new systems

linear algebra operations

ey Challenge

Large Design Space

Extract performance insight

Express operation as a directed acyclic graph
(DAG) of operations

Monte-Carlo Tree Search (MCTS) to identify and
explore regions of interest

Empirical benchmarking
Feature vector for each implementation
Decision tree training for design rules

Initial results pass “sniff test,” working on broader experiments and quantitative evaluation

« Maintain human provenance of library design
* e.g. Modernize Tpetra MPI+GPU distributed

s 1 Libraries are built on existing lower-level primitives

* Qur libraries (and applications) are
combinations of existing library and
vendor operations

« and code to coordinate them Application Code

. CUDA-Aware MPI .
&

Operating System

« and code to implement custom behavior

2

Hardware

+ 1 Libraries are built on existing lower-level primitives

* Qur libraries (and applications) are
combinations of existing library and
vendor operations

« and code to coordinate them Application Code

. CUDA-Aware MPI)

« and code to implement custom behavior

- Performance changes at many layers for
new platforms

* new hardware,
* new CUDA version,

* new OS version, Operating System
- etc

s | Prototype Implementation in C++ and Python

—— e e e e m m mm mm Em Em Em e e —
N

N\
N e e e e e e e e e e e e e e e = =

- o o ==

operations
describes design
space

C++/ CUDA / MPI Python / scikit-learn

6 | Prototype Implementation in C++ and Python

»

—— e o e e o = o = = —
T e e e e e e e e e e e e e e e e
- e e o e o e
e e e o e o o e o o e e = = =

.. DAG . MCTS |
DAG of MCTS searches
operations order of operations
describes design and resource
space assignment

C++/ CUDA / MPI Python / scikit-learn

7 | Prototype Implementation in C++ and Python

o = = o = =y

|
|
I
|
|
|
|
1
|
1
|
I
|
I
|
I
|
\

o m mm mm mm mm mm mm mm o mm mm e e e =
N e e e e e e e e e e e e o e - o

e e e e e e e e e e e e e — —

Class Labels &
o Feature Vectors !
MCTS searches Sequence-to-vector
operations order of operations transformation for labels
describes design and resource
Space assignment

C++/ CUDA / MPI Python / scikit-learn

: | Prototype Implementation in C++ and Python

B before C
D, C same stream

» »

o m mm mm mm mm mm mm mm o mm mm e e e =

\
I
|
|
|
|
1
|
1
|
I
|
I
|
I
|
|
|
1
1

e e e e e e e e e e e e e — —
N e e e e e e e e e e e e e

|
|
I
|
|
|
|
1
|
1
|
I
|
I
|
I
|
\

N e e e e e e e e e e e e o e - o
o o mm o m mm = e o e o =
—— o m mm mm mm e o e = e —

Class Labels & Decision
' Eeature Vectors 7 o Aree o 0. DesignRules -
MCTS searches Sequence-to-vector Decision tree training to identify
operations order of operations transformation for labels discriminating design space features
describes design and resource
Space assignment

C++/ CUDA / MPI Python / scikit-learn

o | Decision Tree Training to Determine which Rules Discriminate
between Classes

y1 before CES-b4-PostSend

samples = 2036
classes: [33.3% 33.3% 33.3%]

False

aitRecv before yl
samples = 1088
classes: 420.2% 54.7% 25.1% |

r, vl diffetyat streams
’ ysamples 520 samples = 568
classes: [0.0% 50%% 49.7%] classes: [37.8% 58.5% 3.6% |

y |

‘ classes: [ﬂ.ﬂ% lﬂﬂ.ﬂ% ﬂ.ﬂ%]

« sync pack beforey, I
« WaitRecv before y, |
* Y_Yrin same stream

 y,and pack in different streams
« Pack, theny,, then sync pack

Pack before yl
samples 396

classes: [1.0% 99.0% 0.0%]

Each path through the tree is a set of design rules that define a performance class I

0 I Vision for this work

Current
« C++ MCTS implementation for MPI/CUDA codes with multiple streams
* Prototype feature-vector and decision tree training using SciKit in Python
* Available at github.com/sandialabs/tenzing

Upcoming
* Applying initial results to Tpetra distributed linear algebra package in Trilinos

Future Explorations
« Identify unexpected performance effects on target platforms (“performance bugs”)
« What to do as communication / computation are more tightly integrated

Summary
* Represent CUDA+MPI operation as DAG

« Automatically generate human-interpretable rules for library design
« Maintain human provenance of implementation (no “black boxes”)

