
Sandia National Laboratories is a
multimission laboratory managed

and operated by National Technology
& Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of

Honeywell International Inc., for the
U.S. Department of Energy’s National
Nuclear Security Administration under

contract DE-NA0003525.

Machine Learning for
CUDA+MPI Design Rules

SAND_XXX

Carl Pearson, Karen Devine, Aurya Javeed

Sandia National Labs

PDSEC 2022

This work is supported by the U.S.
Department of Energy, Office of Science,
Office of Advanced Scientific Computing
Research, Scientific Discovery through

Advanced Computing (SciDAC) program
through the FASTMath Institute.

This research used resources of the
National Energy Research Scientific
Computing Center (NERSC), a U.S.

Department of Energy Office of Science
User Facility located at Lawrence

Berkeley National Laboratory, operated
under Contract No. DE-AC02-05CH11231

using NERSC award ERCAP0019623.

SAND2022-6923CThis paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in
the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Automatic Discovery of Implementation Rules for Fast GPU + MPI Operations

• Prototype automatic tooling for discovering
important design decisions
• Reduced developer effort for performance on

new systems
• Maintain human provenance of library design
• e.g. Modernize Tpetra MPI+GPU distributed

linear algebra operations

2

Key Challenge How it’s Done
Large Design Space • Express operation as a directed acyclic graph

(DAG) of operations
• Monte-Carlo Tree Search (MCTS) to identify and

explore regions of interest

Extract performance insight • Empirical benchmarking
• Feature vector for each implementation
• Decision tree training for design rules

• Fast libraries for heterogeneous
architectures
• Mapping computation onto processors
• Choosing communication strategy
• Unpredictable performance interaction

Initial results pass “sniff test,” working on broader experiments and quantitative evaluation

Libraries are built on existing lower-level primitives

• Our libraries (and applications) are
combinations of existing library and
vendor operations
• and code to coordinate them
• and code to implement custom behavior

3

Operating System

CUDA

CUDA-Aware MPI

Application Code

Trilinosyou are here

Hardware

“the platform
”

Libraries are built on existing lower-level primitives

• Our libraries (and applications) are
combinations of existing library and
vendor operations
• and code to coordinate them
• and code to implement custom behavior

• Performance changes at many layers for
new platforms
• new hardware,
• new CUDA version,
• new OS version,
• etc.

4

Operating System

CUDA

CUDA-Aware MPI

Application Code

Trilinosyou are here

Hardware

“the platform
”

Prototype Implementation in C++ and Python5

DAG

A

B C

D

E

DAG of
operations

describes design
space

C++ / CUDA / MPI Python / scikit-learn

Prototype Implementation in C++ and Python6

DAG MCTS

A

B C

D

E

A

B

C

D

E

C

D

DAG of
operations

describes design
space

MCTS searches
order of operations

and resource
assignment

C++ / CUDA / MPI Python / scikit-learn

Prototype Implementation in C++ and Python7

DAG MCTS
Class Labels &
Feature Vectors

A

B C

D

E

A

B

C

D

E

C

D
0
2
1
2

0
0
0
0

1
1
0
0

0
1
0
1

1
0
1
0

0
0
1
0

0
1
1
1

DAG of
operations

describes design
space

MCTS searches
order of operations

and resource
assignment

Sequence-to-vector
transformation for labels

C++ / CUDA / MPI Python / scikit-learn

Prototype Implementation in C++ and Python8

DAG MCTS
Class Labels &
Feature Vectors

Decision
Tree Design Rules

A

B C

D

E

A

B

C

D

E

C

D B before C
D, C same stream

0
2
1
2

0
0
0
0

1
1
0
0

0
1
0
1

1
0
1
0

0
0
1
0

0
1
1
1

DAG of
operations

describes design
space

Decision tree training to identify
discriminating design space features

MCTS searches
order of operations

and resource
assignment

Sequence-to-vector
transformation for labels

C++ / CUDA / MPI Python / scikit-learn

Decision Tree Training to Determine which Rules Discriminate
between Classes

9

Each path through the tree is a set of design rules that define a performance class

• yL and pack in different streams
• Pack, then yL, then sync pack

• sync pack before yL
• WaitRecv before yL
• yL, yR in same stream

Vision for this work

• Current
• C++ MCTS implementation for MPI/CUDA codes with multiple streams
• Prototype feature-vector and decision tree training using SciKit in Python
• Available at github.com/sandialabs/tenzing

• Upcoming
• Applying initial results to Tpetra distributed linear algebra package in Trilinos

• Future Explorations
• Identify unexpected performance effects on target platforms (“performance bugs”)
• What to do as communication / computation are more tightly integrated

• Summary
• Represent CUDA+MPI operation as DAG
• Automatically generate human-interpretable rules for library design
• Maintain human provenance of implementation (no “black boxes”)

10

