
Sandia National Laboratories is a
multimission laboratory managed

and operated by National Technology
& Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of

Honeywell International Inc., for the
U.S. Department of Energy’s National
Nuclear Security Administration under

contract DE-NA0003525.

Machine Learning for
CUDA+MPI Design Rules

SAND_XXX

Carl Pearson, Karen Devine, Aurya Javeed

Sandia National Labs

PDSEC 2022

This work is supported by the U.S.
Department of Energy, Office of Science,
Office of Advanced Scientific Computing
Research, Scientific Discovery through

Advanced Computing (SciDAC) program
through the FASTMath Institute.

This research used resources of the
National Energy Research Scientific
Computing Center (NERSC), a U.S.

Department of Energy Office of Science
User Facility located at Lawrence

Berkeley National Laboratory, operated
under Contract No. DE-AC02-05CH11231

using NERSC award ERCAP0019623.

SAND2022-6922CThis paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in
the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Automatic Discovery of Implementation Rules for Fast GPU + MPI Operations

• Prototype automatic tooling for discovering
important design decisions
• Reduced developer effort for performance on

new systems
• Maintain human provenance of library design
• e.g. Modernize Tpetra MPI+GPU distributed

linear algebra operations

2

Key Challenge How it’s Done
Large Design Space • Express operation as a directed acyclic graph

(DAG) of operations
• Monte-Carlo Tree Search (MCTS) to identify and

explore regions of interest

Extract performance insight • Empirical benchmarking
• Feature vector for each implementation
• Decision tree training for design rules

• Fast libraries for heterogeneous
architectures
• Mapping computation onto processors
• Choosing communication strategy
• Unpredictable performance interaction

Initial results pass “sniff test,” working on broader experiments and quantitative evaluation

Libraries are built on existing lower-level primitives

• Our libraries (and applications) are
combinations of existing library and
vendor operations
• and code to coordinate them
• and code to implement custom behavior

3

Operating System

CUDA

CUDA-Aware MPI

Application Code

Trilinosyou are here

Hardware

“the platform
”

Libraries are built on existing lower-level primitives

• Our libraries (and applications) are
combinations of existing library and
vendor operations
• and code to coordinate them
• and code to implement custom behavior

• Performance changes at many layers for
new platforms
• new hardware,
• new CUDA version,
• new OS version,
• etc.

4

Operating System

CUDA

CUDA-Aware MPI

Application Code

Trilinosyou are here

Hardware

“the platform
”

Prototype Implementation in C++ and Python5

DAG

A

B C

D

E

DAG of
operations

describes design
space

C++ / CUDA / MPI Python / scikit-learn

Prototype Implementation in C++ and Python6

DAG MCTS

A

B C

D

E

A

B

C

D

E

C

D

DAG of
operations

describes design
space

MCTS searches
order of operations

and resource
assignment

C++ / CUDA / MPI Python / scikit-learn

Prototype Implementation in C++ and Python7

DAG MCTS
Class Labels &
Feature Vectors

A

B C

D

E

A

B

C

D

E

C

D
0
2
1
2

0
0
0
0

1
1
0
0

0
1
0
1

1
0
1
0

0
0
1
0

0
1
1
1

DAG of
operations

describes design
space

MCTS searches
order of operations

and resource
assignment

Sequence-to-vector
transformation for labels

C++ / CUDA / MPI Python / scikit-learn

Prototype Implementation in C++ and Python8

DAG MCTS
Class Labels &
Feature Vectors

Decision
Tree Design Rules

A

B C

D

E

A

B

C

D

E

C

D B before C
D, C same stream

0
2
1
2

0
0
0
0

1
1
0
0

0
1
0
1

1
0
1
0

0
0
1
0

0
1
1
1

DAG of
operations

describes design
space

Decision tree training to identify
discriminating design space features

MCTS searches
order of operations

and resource
assignment

Sequence-to-vector
transformation for labels

C++ / CUDA / MPI Python / scikit-learn

Example: Distributed SpMV9

+

local x entries

Two independent SpMVs
in each rank

Rank 0

Rank 1

Rank 2

“Local” part needs no

communication

“Remote” part must wait to

receive x-vector entries

x entrie
s fro

m

other ra
nks

=

+

+

A x y

AL xL yL
AR xR yR

DAG represents primitive operations and their dependences10

pack (CUDA)

PostSends (MPI)
yL = LxL (cuSparse)

yR = RxR (cuSparse)

y = yL + yR (CUDA)

start

end

send local x entries
to other ranks

”remote” part
”local” part

PostRecvs (MPI)

WaitRecvs (MPI)WaitSends (MPI)

”local” part

WSs

pack

PRs

Design Space: Order of Operations, Resource Assignment, and
Synchronization

• Different resource assignments require different synchronization

• May improve GPU utilization or communication/computation
overlap, but increases required operations

11

CPU
Stream 1

Stream 2

CPU

Stream 1

Stream 2

yL

yR

yL pack yR yL + yR

kernel launch
sync ops
application operations

(not to scale)

PSs PRs WSs WRs

PSs WRs
yL + yR

Need to Discover Important Design Decisions

• Some choices matter a lot

• Many choices do not matter at all

• input- and system-dependent

• Large design space: lots of expert
time to evaluate and implement
for each target platform

• Monte-Carlo Tree Search to focus
on valuable decisions

12

1.
45

x
sp

ee
du

p
2036 implementations

{order of operations}
x

{stream assignments}
x

{synchronizations}

MCTS Represents Search State in a Tree13

start

pack
stream�0

cudaEventRecord
stream�0,�event�1

pack
stream�1

yL
stream�0

PostSends yL
stream�1

cudaEventSync
event�1

PostSends

yL
stream�0

…

State space search is stored in a tree

…

MCTS Represents Search State in a Tree14

start

pack
stream�0

cudaEventRecord
stream�0,�event�1

pack
stream�1

yL
stream�0

PostSends yL
stream�1

cudaEventSync
event�1

PostSends

yL
stream�0

…

Each node is an operation and
resource assignment

From DAG, or synchronization operation

State space search is stored in a tree

…

MCTS Represents Search State in a Tree15

start

pack
stream�0

cudaEventRecord
stream�0,�event�1

pack
stream�1

yL
stream�0

PostSends yL
stream�1

cudaEventSync
event�1

PostSends

yL
stream�0

…

Path is the beginning of an implementation

pack in stream 0, record event 1 in stream 0, …

State space search is stored in a tree

…

Each node is an operation and
resource assignment

From DAG, or synchronization operation

MCTS Represents Search State in a Tree16

start

pack
stream�0

cudaEventRecord
stream�0,�event�1

pack
stream�1

yL
stream�0

PostSends yL
stream�1

cudaEventSync
event�1

PostSends

yL
stream�0

…Children are all possible subsequent
operation / resource combinations

All DAG predecessors complete and
synchronized

Path is the beginning of an implementation

pack in stream 0, record event 1 in stream 0, …

State space search is stored in a tree

…

Each node is an operation and
resource assignment

From DAG, or synchronization operation

MCTS Represents Search State in a Tree17

start

pack
stream�0

cudaEventRecord
stream�0,�event�1

pack
stream�1

yL
stream�0

PostSends yL
stream�1

cudaEventSync
event�1

PostSends

yL
stream�0

…Children are all possible subsequent
operation / resource combinations

All DAG predecessors complete and
synchronized

Path is the beginning of an implementation

pack in stream 0, record event 1 in stream 0, …

State space search is stored in a tree

…

Each node is an operation and
resource assignment

From DAG, or synchronization operation

Each node stores empirical
performance of any complete
implementation it is part of

MCTS Iteratively Grows Tree to Focus on Valuable Regions18

start

pack
stream�0

cudaEventRecord
stream�0,�event�1

pack
stream�1

yL
stream�0

PostSends yL
stream�1

yL
stream�0

…

Selection: Choose a path through the tree,
balancing valuable vs unexplored subtrees

MCTS Iteratively Grows Tree19

start

pack
stream�0

cudaEventRecord
stream�0,�event�1

pack
stream�1

yL
stream�0

PostSends yL
stream�1

cudaEventSync
event�1

yL
stream�0

…

Selection: Choose a path through the tree,
balancing valuable vs unexplored subtrees

Expansion: Create a new child

MCTS Iteratively Grows Tree20

start

pack
stream�0

cudaEventRecord
stream�0,�event�1

pack
stream�1

yL
stream�0

PostSends yL
stream�1

cudaEventSync
event�1

yL
stream�0

…

end

Selection: Choose a path through the tree,
balancing valuable vs unexplored subtrees

Expansion: Create a new child

Rollout: Random ordering / assignment
to complete the implementation

MCTS Iteratively Grows Tree21

start

pack
stream�0

cudaEventRecord
stream�0,�event�1

pack
stream�1

yL
stream�0

PostSends yL
stream�1

cudaEventSync
event�1

yL
stream�0

…

T=�5e-5 end

Selection: Choose a path through the tree,
balancing valuable vs unexplored subtrees

Expansion: Create a new child

Rollout: Random ordering / assignment
to complete the implementation

Evaluation: Empirical benchmark

MCTS Iteratively Grows Tree22

start

pack
stream�0

cudaEventRecord
stream�0,�event�1

pack
stream�1

yL
stream�0

PostSends yL
stream�1

cudaEventSync
event�1

yL
stream�0

…

Selection: Choose a path through the tree,
balancing valuable vs unexplored subtrees

Expansion: Create a new child

Rollout: Random ordering / assignment
to complete the implementation

Evaluation: Empirical benchmark
end

Backpropagation: Update each node with
new empirical result

Tree is Deeper and Larger in Valuable Regions

As iterations proceed, tree
preferentially explores high-reward
regions of the design space

Store all complete implementations
and performance results in a table as
we go

23

start

pack
stream�0

cudaEventRecord
stream�0,�event�1

pack
stream�1

yL
stream�0

PostSends yL
stream�1

cudaEventSync
event�1

PostSends

yL
stream�0

…

T�=�7e-5

T=�5e-5

T�=�6e-5

class 0 1 2

Transform Empirical Results into Performance Classes and
Feature Vectors

24

automatic class labeling to identify
performance classes

(convolution & peak detection)

feature vectors encode which rules an
implementation follows

(sequence-to-vector transformation)

Impl. Class
Label

A then B … A same
stream

B

…

98 2 0 1 1 0

0 0 1 0 1 0

56 1 0 0 1 1

73 1 0 0 1 1

… …

ordering rules
resource

assignment rules

subset explored by MCTS

3 4

Decision Tree Training to Determine which Rules Discriminate
between Classes

25

Each path through the tree is a set of design rules that define a performance class

• yL and pack in different streams
• Pack, then yL, then sync pack

• sync pack before yL
• WaitRecv before yL
• yL, yR in same stream

Train an Accurate Decision Tree

• Training process is for isolating
discriminating features
• not for classifying unseen inputs

• Incrementally increase tree size until
100% accuracy achieved

• Accuracy-complexity tradeoff in
generated rules

26

Does MCTS Find Relevant Design Space Regions?

MCTS
Iterations 2036 50 100 200 400

Discovered
Ruleset for

Fastest
Performance

Class

yL → CES-b4-PostSend

yL ╳ Pack

Pack → yL

yL → CES-b4-PostSend

yL ╳ Pack

Pack → yL

yL → CES-b4-PostSend

yL ╳ Pack

Pack → yL

yL → WaitSend

yL → CES-b4-PostSend

yL ╳ Pack

Pack before yL

yL → WaitSend

yL → WaitRecv

PostSend → yL

Pack → yL

CER-after-Pack → yL

yL → WaitSend

PostRecv → CES-b4-PostSend

27

A ╳ B: A different stream than B
A → B: A, then B

• Each MCTS iteration is a costly empirical benchmark

• Rule quality with reduced iterations?
• For a given # of iterations, how accurate are the rules?
• For a given # of iterations, qualitative look at the rules?

Most populous ruleset shown

Does MCTS Find Relevant Design Space Regions?

MCTS
Iterations 2036 50 100 200 400

Discovered
Ruleset for

Fastest
Performance

Class

yL → CES-b4-PostSend

yL ╳ Pack

Pack → yL

yL → CES-b4-PostSend

yL ╳ Pack

Pack → yL

yL → CES-b4-PostSend

yL ╳ Pack

Pack → yL

yL → WaitSend

yL → CES-b4-PostSend

yL ╳ Pack

Pack before yL

yL → WaitSend

yL → WaitRecv

PostSend → yL

Pack → yL

CER-after-Pack → yL

yL → WaitSend

PostRecv → CES-b4-PostSend

28

A ╳ B: A different stream than B
A → B: A, then B

• Each MCTS iteration is a costly empirical benchmark

• Rule quality with reduced iterations?
• For a given # of iterations, how accurate are the rules?
• For a given # of iterations, qualitative look at the rules?

Most populous ruleset shown

Few iterations → approx. random sample
Sample distribution = exhaustive search

Does MCTS Find Relevant Design Space Regions?

MCTS
Iterations 2036 50 100 200 400

Discovered
Ruleset for

Fastest
Performance

Class

yL → CES-b4-PostSend

yL ╳ Pack

Pack → yL

yL → CES-b4-PostSend

yL ╳ Pack

Pack → yL

yL → CES-b4-PostSend

yL ╳ Pack

Pack → yL

yL → WaitSend

yL → CES-b4-PostSend

yL ╳ Pack

Pack before yL

yL → WaitSend

yL → WaitRecv

PostSend → yL

Pack → yL

CER-after-Pack → yL

yL → WaitSend

PostRecv → CES-b4-PostSend

29

A ╳ B: A different stream than B
A → B: A, then B

• Each MCTS iteration is a costly empirical benchmark

• Rule quality with reduced iterations?
• For a given # of iterations, how accurate are the rules?
• For a given # of iterations, qualitative look at the rules?

Most populous ruleset shown

More iterations → samples drawn from valuable regions
More samples fall into different rules

Vision for this work

• Current
• C++ MCTS implementation for MPI/CUDA codes with multiple streams
• Prototype feature-vector and decision tree training using SciKit in Python
• Available in March at github.com/sandialabs/tenzing-core

• Upcoming
• Applying initial results to Tpetra distributed linear algebra package in Trilinos

• Future Explorations
• Identify unexpected performance effects on target platforms (“performance bugs”)
• What to do as communication / computation are more tightly integrated

• Summary
• Represent CUDA+MPI operation as DAG
• Automatically generate human-interpretable rules for library design
• Maintain human provenance of implementation (no “black boxes”)

30

