SAND2022-6922C

This paper describes objective technical results and analysis. Any subijective views or opinions that mightlbelexpressed}in|
the paper do not necessarily represent the views of the U.S. Department of Energy or the United States'Government.

Sandia
National
Laboratories

Machine Learning for
CUDA+MPI Design Rules

his work is supported by the U.S. Ei
Department of Energy, Office of Science,
Office of Advanced Scientific Computing f
TResearch, Scientific Discovery through =
| Advanced Computing (SciDAC) program
~ through the FASTMath Institute. ="+
. This research used resources of the '+
_National Energy Research Scientific
Computing Center (NERSC), a U.S.
Department of Energy Office of Science
User Facility located at Lawrence
Berkeley National Laboratory, operated
under Contract No. DE-AC02-05CH11231
using NERSC award ERCAP0019623.

s -
FASTMATH

©ENERGY NISH

Sandia National Laboratories is a
multimission laboratory managed
and operated by National Technology
& Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of
Honeywell International Inc., for the
U.S. Department of Energy’s National
Nuclear Security Administration under
contract DE-NA0003525.

SAND_XXX

Carl Pearson, Karen Devine, Aurya Javeed

Sandia National Labs

PDSEC 2022

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering [SolutionsfofiSandia,|LLC, alwhollylowned!
subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administrationfundercontract DE-NA0003525.

Automatic Discovery of Implementation Rules for Fast GPU + MPI Operations

Fast libraries for heterogeneous

architectures

« Mapping computation onto processors » Reduced developer effort for performance on
* Choosing communication strategy
« Unpredictable performance interaction

* Prototype automatic tooling for discovering

important design decisions

new systems

linear algebra operations

ey Challenge

Large Design Space

Extract performance insight

Express operation as a directed acyclic graph
(DAG) of operations

Monte-Carlo Tree Search (MCTS) to identify and
explore regions of interest

Empirical benchmarking
Feature vector for each implementation
Decision tree training for design rules

Initial results pass “sniff test,” working on broader experiments and quantitative evaluation

« Maintain human provenance of library design
* e.g. Modernize Tpetra MPI+GPU distributed

s 1 Libraries are built on existing lower-level primitives

* Qur libraries (and applications) are
combinations of existing library and
vendor operations

« and code to coordinate them Application Code

. CUDA-Aware MPI .
&

Operating System

« and code to implement custom behavior

2

Hardware

+ 1 Libraries are built on existing lower-level primitives

* Qur libraries (and applications) are
combinations of existing library and
vendor operations

« and code to coordinate them Application Code

. CUDA-Aware MPI)

« and code to implement custom behavior

- Performance changes at many layers for
new platforms

* new hardware,
* new CUDA version,

* new OS version, Operating System
- etc

s | Prototype Implementation in C++ and Python

—— e e e e m m mm mm Em Em Em e e —
N

N\
N e e e e e e e e e e e e e e e = =

- o o ==

operations
describes design
space

C++/ CUDA / MPI Python / scikit-learn

6 | Prototype Implementation in C++ and Python

»

—— e o e e o = o = = —
T e e e e e e e e e e e e e e e e
- e e o e o e
e e e o e o o e o o e e = = =

.. DAG . MCTS |
DAG of MCTS searches
operations order of operations
describes design and resource
space assignment

C++/ CUDA / MPI Python / scikit-learn

7 | Prototype Implementation in C++ and Python

o = = o = =y

|
|
I
|
|
|
|
1
|
1
|
I
|
I
|
I
|
\

o m mm mm mm mm mm mm mm o mm mm e e e =
N e e e e e e e e e e e e o e - o

e e e e e e e e e e e e e — —

Class Labels &
o Feature Vectors !
MCTS searches Sequence-to-vector
operations order of operations transformation for labels
describes design and resource
Space assignment

C++/ CUDA / MPI Python / scikit-learn

: | Prototype Implementation in C++ and Python

B before C
D, C same stream

» »

o m mm mm mm mm mm mm mm o mm mm e e e =

\
I
|
|
|
|
1
|
1
|
I
|
I
|
I
|
|
|
1
1

e e e e e e e e e e e e e — —
N e e e e e e e e e e e e e

|
|
I
|
|
|
|
1
|
1
|
I
|
I
|
I
|
\

N e e e e e e e e e e e e o e - o
o o mm o m mm = e o e o =
—— o m mm mm mm e o e = e —

Class Labels & Decision
' Eeature Vectors 7 o Aree o 0. DesignRules -
MCTS searches Sequence-to-vector Decision tree training to identify
operations order of operations transformation for labels discriminating design space features
describes design and resource
Space assignment

C++/ CUDA / MPI Python / scikit-learn

o | Example: Distributed SpMV

A X y

: R
Two independent SpMVs remc?te"part
in each rank CCeive . ecl‘m Cwaje 4
0 0
Ntryj
Ag Xr Yr '€s

10 | DAG represents primitive operations and their dependences

send local x entries @
to other ranks

pack (CUDA

)

“remote” part

PostRecvs (MPI)

WaitRecvs (MPI)

Yr = RXg (cuSparse)

[Y=y, *ya(CUDA) |

[end}

“local” part

PostSends (MPI)
Yy, = Lx_ (cuSparse)

WaitSends (MPI)

.1 | Design Space: Order of Operations, Resource Assignment, and
Svynchronization

CPU PSs PRs WSs WRs

Stream 1

Stream 2 (not to scale)

- Different resource assignments require different synchronization B kernel launch

- May improve GPU utilization or communication/computation

; : : application operations
overlap, but increases required operations Happ P

CPU . I PSs WRs WSs
Stream 1

]
l sync ops |

Stream 2

> 1 Need to Discover Important Design Decisions

« Some choices matter a lot

All SpMV Impls
« Many choices do not matter at all 8 00F 05
* input- and system-dependent o 750£05
-
« Large design space: lots of expert § g 10RO
time to evaluate and implement o = ssoc0s
x 4
for each target platform 5 L
* Monte-Carlo Tree Search to focus =
Lo ! 5.50E-05
on valuable decisions
5.00E-05
TREREREORERBLNEEYRIHEEERTER
{order of operations}
X 2036 implementations .
<

{stream assignments}
X
{synchronizations}

State space search is stored in a tree

pack pack PostSends v,

stream O stream 1 stream 1

1

YL cudaEventRecord YL
stream O stream 0, event 1 stream O

v
mentSync

event 1

y

| PostSends |

I
13 | MCTS Represents Search State ina Tree m
I

State space search is stored in a tree

|
14 | MCTS Represents Search State ina Tree m

pack pack PostSends v,
stream O stream 1 stream 1
/\ |

cudaEventRecord
stream 0, event 1

cudaEventSync
event 1

y

| PostSends |

Each node is an operation and
resource assignment

From DAG, or synchronization operation I

15 | MCTS Represents Search State ina Tree

Path is the beginning of an implementation

pack in stream O, record event 1 in stream O, ...

State space

pack
stream O

search is stored in a tree

pack PostSends YL

stream 1 stream 1

cudaEventRecord
stream 0, event 1

cudaEventSync
event 1

y

| PostSends

Each node is an operation and
resource assignment

From DAG, or synchronization operation

State space search is stored in a tree

Path is the beginning of an implementation

pack in stream O, record event 1 in stream O, ... pack pack [PostSends| |y,
stream O stream 1 stream 1

Children are all possible subsequent / r

. . . cudaEventRecord
operatlon / resource comblnatlons stream 0 stream 0, event 1

cudaEventSync
All DAG predecessors complete and event 1

synchronized Rt y—----- g
| PostSends |

I
s 1| MCTS Represents Search Stateina Tree m
I

Each node is an operation and
resource assignment

From DAG, or synchronization operation I

7 1| MCTS Represents Search Stateina Tree

State space search is stored in a tree

Path is the beginning of an implementation

pack in stream 0, record event 1 in stream 0, ... pack pack [PostSends| |y,
stream 0 stream 1 stream 1
Children are all possible subsequent / '
. . . YL cudaEventRecord YL
operation / resource combinations stream 0 | |stream 0, event 1 stream 0

cudaEventSync
event 1

All DAG predecessors complete and

1
synchronized Nmmmmmmmmes y-—---- g
| PostSends |
Each node stores empirical Each node is an operation and
performance of any complete resource assignment

implementation it is part of

o
!

From DAG, or synchronization operation

|
g | MCTS Iteratively Grows Tree to Focus on Valuable Regions m

Selection: Choose a path through the tree,
balancing valuable vs unexplored subtrees

pack pack PostSends v,
stream 0 stream 1 stream 1
/‘ |
YL cudaEventRecord YL
stream O stream 0, event 1 stream O

Selection: Choose a path through the tree,

balancing valuable vs unexplored subtrees

pack pack PostSends YL
Expansion: Create a new child stream 0 stream 1 stream 1

1

YL cudaEventRecord YL
stream 0 stream 0, event 1 stream 0
v
cudaEventSync
event 1

I
19 | MCTS Iteratively Grows Tree m
I

Selection: Choose a path through the tree,

balancing valuable vs unexplored subtrees

pack pack PostSends YL
Expansion: Create a new child stream 0 stream 1 stream 1

1

YL cudaEventRecord YL

i i t 0 t 0, t1 t 0
Rollout: Random ordering / assignment Sy stream

to complete the implementation cudaEvent1Sync
event

[end [

I
0 I MCTS lteratively Grows Tree m
I

Selection: Choose a path through the tree,

balancing valuable vs unexplored subtrees

pack pack PostSends YL
Expansion: Create a new child stream 0 stream 1 stream 1

1

YL cudaEventRecord YL

i i t 0 t 0, t1 t 0
Rollout: Random ordering / assignment Sy stream

to complete the implementation cudaEvent1Sync
event

Evaluation: Empirical benchmark

T= 5e-5 | end |

I
o1 I MCTS lteratively Grows Tree m
I

> I MCTS lteratively Grows Tree

Selection: Choose a path through the tree,
balancing valuable vs unexplored subtrees

Expansion: Create a new child

stream O

pack
stream 1

A

YL

stream O t

daEventRecord
ream 0, event 1

Yo
stream O

Rollout: Random ordering / assignment
to complete the implementation

Evaluation: Empirical benchmark

Backpropagation: Update each node with
new empirical result

v

cudaEventSync

event 1

T

end

PostSends

i
stream 1

>3 | Tree is Deeper and Larger in Valuable Regions

As iterations proceed, tree
preferentially explores high-reward
regions of the design space

Store all complete implementations
and performance results in a table as
we go

pack
stream O

|

Yo
stream O

cudaEventRecord
stream 0, event 1

v

cudaEventSync
event 1

y

PostSends

T= 5e-5

pack
stream 1

y

Yo
stream O

o

PostSends

i
stream 1

»2 | Transform Empirical Results into Performance Classes and
Feature Vectors

resource
d by nCT> ordering rules assignment rules

- e
le-5 ot eXp\Or
\ \

[|
Class A then B A same
Label stream
2 0

(a)

Elapsed Time (s)
=])

le—6
—— 95th percentile threshold k

LN 98 1 1 0
™Y \ ﬂ oM 0 0 1 0 1 0
ol T
. 56 1 0 0 1 1
— 73 1 0 0 1 1

@ =
g | classO |1 ,2/'/ 3 |4
2 —

0 25 50 75 100 125 150 175 200
Implementation
automatic class labeling to identify feature vectors encode which rules an
performance classes implementation follows

(convolution & peak detection) (sequence-to-vector transformation)

Decision Tree Training to Determine which Rules Discriminate
between Classes

y1 before CES-b4-PostSend

samples = 2036
classes: [33.3% 33.3% 33.3%]

False

aitRecv before yl
samples = 1088
classes: 420.2% 54.7% 25.1% |

r, vl diffetyat streams
’ ysamples 520 samples = 568
classes: [0.0% 50%% 49.7%] classes: [37.8% 58.5% 3.6% |

y |

‘ classes: [ﬂ.ﬂ% lﬂﬂ.ﬂ% ﬂ.ﬂ%]

« sync pack beforey, I
« WaitRecv before y, |
* Y_Yrin same stream

 y,and pack in different streams
« Pack, theny,, then sync pack

Pack before yl
samples 396

classes: [1.0% 99.0% 0.0%]

Each path through the tree is a set of design rules that define a performance class I

s | Train an Accurate Decision Tree

« Training process is for isolating
discriminating features

« not for classifying unseen inputs

* Incrementally increase tree size until
100% accuracy achieved

« Accuracy-complexity tradeoff in
generated rules

Trainin

0.225 -
0.200 -
0.175 -
0.150 ~
o 0.125 -
0.100 -
0.075 -
0.050 -
0.025 -

Error

0.000 -

3 4 6 7 8 9 10
Leaf Nodes

11 13

Tree Depth

- B

7 | Does MCTS Find Relevant Design Space Regions?

1.0 ~
- Each MCTS iteration is a costly empirical benchmark _ 081
* Rule quality with reduced iterations? ;30-5'
« For a given # of iterations, how accurate are the rules? — 8041

o

« For a given # of iterations, qualitative look at the rules?

o
[a%

0.0~
50 100 200 400 2036

MCTS lterations |

MCTS
Iterations

y, — CES-b4-PostSend y, — CES-b4-PostSend y, — CES-b4-PostSend y, — CES-b4-PostSend y, — WaitRecv

g:;‘:;‘éirficrl y, X Pack y, X Pack y, X Pack y, X Pack PostSend — vy,
Fastest Pack —y, Pack —y, Pack —y, Pack before y, Pack — vy,
Performance y, — WaitSend y, — WaitSend CER-after-Pack — y,
Class y, — WaitSend
PostRecv — CES-b4-PostSend
A X B: Adifferent stream than B Most populous ruleset shown

A— B: A thenB

s | Does MCTS Find Relevant Design Space Regions?

- Each MCTS iteration is a costly empirical benchmark

* Rule quality withreduced jterations?
* For agiven : :
or a glve Few iterations — dpprox. random sample

* Foragiven Sample distribution = exhaustive search

100 200 400
MCTS lterations

MCTS

Iterations 400

y, — CES-b4-PostSend y, — CES-b4-PostSend y, — CES-b4-PostSend y, — CES-b4-PostSend . — WaitRecv

gmz;z:rficrl y. X Pack y X Pack y, X Pack y, X Pack PostSend — y,
Fastest Pack —y, Pack —y, Pack -y, Pack before y, Pack — vy,

y, — WaitSend y, — WaitSend ER-after-Pack — y,

Performance

Class . — WaitSend
PostRecv — CES-b4-PostSend
A X B: Adifferentoteamian o oSt populous ruleset shown

A— B: A thenB

>0 | Does MCTS Find Relevant Design Space Regions?

« Each MCTS iteration is a costly empirical benchmark 0.8+

* Rule quality with reduced iterations?

More iterations — samples drawn from valuable regions
More samples fall into different rules

50 100 200 400
S Iterations

Iterations

y, — CES-b4-PostSend Jy, — CES-b4-PostSend y, — CES-b4-PostSend y, — CES-b4-PostSend
y, X Pack y, X Pack y, X Pack y, X Pack

2036

y, — WaitRecv

Discovered PostSend — y,

Ruleset for
Pack — Pack — Pack — Pack before Pack —
Fastest N i i ore ¥, Yo
Performance y, — WaitSend y, — WaitSend CER-after-Pack — y, I

Class y, — WaitSend
PostRecv — CES-b4-PostSend
A X B: AdifferefMtotreann tan B Most populoUS Tenesersow

A— B: A thenB

30 1 Vision for this work

Current
« C++ MCTS implementation for MPI/CUDA codes with multiple streams
* Prototype feature-vector and decision tree training using SciKit in Python
* Available in March at github.com/sandialabs/tenzing-core

Upcoming
* Applying initial results to Tpetra distributed linear algebra package in Trilinos

Future Explorations
« Identify unexpected performance effects on target platforms (“performance bugs”)
« What to do as communication / computation are more tightly integrated

Summary
* Represent CUDA+MPI operation as DAG

« Automatically generate human-interpretable rules for library design
« Maintain human provenance of implementation (no “black boxes”)

