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2 | Technical Motivation - Stress Intensity Threshold

 Brittle fracture of silicates affect the stability and reliability of amorphous
systems making prediction of the mechanical response difficult

* Even slow crack growth rates, 10-1 m/s and 10-'! m/s can cause significant crack
propagations over years of service

Crack Velocity Fracture Length (m)
(m/s)

10 Years 30 Years 10-13 m/s velocity is reported

108 31.5400 94.6100 for silica fibers and soda-lime
10-10 0.3154 0.9461 silicate glass from post-

' ' fracture analysis of surfaces
10712 0.0031 0.0094

1. Crack velocity decreases with applied load, but data becomes more scarce at
lower load rates

Crack growth increases with increasing humidity, but still exists in vacuum
conditions

Do cracks continue to propagate? Or is there a stress-intensity
threshold below which the crack no longer propagates?

References: Wiederhorn, S. M. J. Amer. Ceram. Soc. (1967), Wiederhorn and Bolz. J. Amer. Ceram. Soc. (1970), Muraoka and Abe J. Am. Ceram.

Soc. (1996), Kocer and Collins J. Am. Ceram. Soc. (2001), Waurischk et al. J. Non-Cryst. Solids 572 (2021): 121094. Wiederhorn Int. J. Frac. Mech.
4.2 (1968): 171-1717.
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3 | Monitoring Crack Growth

400 n B0 min.
320 min.

*  Optically tracking crack growth is
challenging at slow crack growth rates

* Need to have a stable crack with known
loading conditions

*  AFM provides resolution with sensitivity to
surface features for monitoring crack growth

AFM images of 12.5%Na,0 - 87.5%Si0,
glass at 650 °C

Wheaton and Clare. J. Non-Crystl. Solids 353.52-54 (2007): 4767-4778.

*  Bi-beam with varying CTE

Bi-beam Specimens

* Bi-beam samples based on mis-match of CTE
* Pilkington soda-lime silicate (CTE = 9.1x10-6/°C)
* Schott B270 (CTE = 10.12x10%/°C)

* Diffusion bonded edges with mirror finish
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Chevron Notch

Malterial 1: E,,v,.a, h,

Material 2: E,.v,.a,

Grutzik et al. Exp. Mech. 61.2 (2021): 411-418.
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Sequence of successive AFM height images a soda—lime glass at
RH = 45%. The vertical range is 10 nm.

Atomic Force Microscopy
e AFM (Veeco D5000) - high aspect ratio AFM probes
*  Plastic environmental enclosure w/ humidity source
e 15,23,25,32,33,37 and 40% RH
* 512 x 512 pixel resolution; ~28 min per image, continuously imaged

__ /'i' :
1

Veeco Dimension 5000 AFM Nanosensors SuperSharpSilicon AFM Tip

Célarié et al. (2007). J. Non-Cryst. Solids. 353(1), 51-68.




4 ‘ Crack Growth in Sodium-Silicate Glasses
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s | Stepwise Crack Propagation

Tip Location

900
23 % RH AFM Series
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6 ‘ Stepwise Crack Propagation

31 % RH AFM Series (~14 hours)
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Growth of surface features surrounding
fracture observed at higher relative humidity

|
Results - 37% RH
‘ 0 37 % RH AFM Series m
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8 ‘ Results - 40% RH
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9 | Formation of Surface Features during Fracture
40% RH

Fracture Surface

45% RH

: )
oo 1: Hesght 6000 pm

-1Z3.0nm

37% RH

Celarie, Ciccotti, and Marliere, J. Non-Cryst. Solids 353 (2007)
Wantanabe, et.al.; J. Non-Cryst. Solids 177 (1994)
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| Are similar phenomena present at the atomistic scale?

Why atomistic simulations?

e Subcritical crack growth fundamentally occurs on a nanometer scale
¢ Fracture mechanisms occur through a bond breakage and formation process

Molecular scale simulations have replicated the fracture toughness of the bulk material
Fracture propagation is stepwise for silica from far-field loading and notched geometries
Fractures propagate when loading exceeds the fracture toughness

Sources of Fracture Propagation?
e Typically structures are single

component so little/no changes in local

composition
* No variation with minimum defect
distance

What other types of structural
factors could be influencing crack
propagation?
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Jones et al. J. Phys.: Condens.Matter 30.24 (2018): 245901.
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Rimsza et al. J. Amer. Ceram. Soc. 101.4 (2018): 1488-1499.
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Calculated K, for a-SiO. Data are reported for five

samples at applied strain of 0.22.

Wilson et al. Comput. Methods Appl. Mech. Eng. 354 (2019): 732-749.



| Computational Methods

* C(lassical molecular dynamics for large scale simulation of silica fracture

* ReaxFF: bond order based forcefield including silica bond breakage and formation Vacancy Ton “ange Water
rrugmtmn mteraction
H.ﬁ ,l_‘.-uq. H'*.. LA R v !
ETﬂtﬂf = Eﬂmad + Eﬂuer + EUndm‘ + ELP + EVaI + EPen + ETars + Eﬂ'mlj + EVDW + ECou.‘. (1) #'__I:IJ.SIEE% ._E ?Wﬂt&i‘ Iﬂt’ﬂl‘f&t‘ﬂ ;»

Hahn et al. J. Phys Chem C 122 34 (2018) 19613 19624.

Two-step methodology for structure generation developed by Deng et al.:

Deng et al. J. Amer. Ceram. Soc. 103.3 (2020): 1600-1614.

1. Melt and quench with a non-reactive forcefield 2. Annealing with Na/Si/O/H ReaxFF

Melting at 3500 K for 100 ps

Cool to 300 K at a rate of 5 K/ps
Final 100 ps equilibration at 300 K
NPT ensemble and 1.0 fs time step

Pedone et al. J. Phys. Chem. B. 110.24 (2006):

!el: ower et a |l

11780-11795.

Na Si
2550 11525
3850 10875
5100 10250
6400 9600
7700 8950

Non-Rryst. Solids 349 (2004): 168-172.

Heat to 1500 K at 5 K/ps

Hold at 1500 K for 80 ps

Cool to 300 K at a rate of 5 K/ps
NPT ensemble and a 0.25 fs time step

Hahn et al. J. Phys. Chem. C 122.34 (2018): 19613-19624.

O This Work Ref
24325 2.42 2.30
23675 2.44 2.34
23050 2.45 2.38
22400 2.46 2.43
21750 2.46 2.47




| Bulk Sodium Silicate Properties

Structural and mechanical properties of sodium silicates are consistent with previous work

12 4 10
— N$10 — NS10
— NS15
m— NS20
10 + — NS25
8 - —— NS30
3 4
5 .
6 -
S 6 g 2 = S | -SI
4 ,
4 .
1 .
2 -
2 W
0 ; ; : 0 ‘ : : - - . 0 : ‘ : : : :
100 120 140 160 180 2 3 4 5 6 7 8 2 3 4 5 6 7 8
Si-O-Si Angle (deg) Na'"Na Distance (A) Si~Si Distance (A)
Elastic (E) and shear (G) modulus and surface energy for sodium silicate glass models and comparison experimental results . .
I D compression Simple shear
! EGPa) | _GGPa) [ v | SurfaceEnergy (/m? : 7 s -

B This Work Ref This Work Ref This Work Ref This Work
| NS10 | 82.7 73.4 32.6 29.9 0.27 0.22 1.74 —-
| NS15 | 74.9 65.1 29.2 29.2 0.29 0.21 1.53 |
| NS20 | 67.1 59.9 25.7 25.4 0.30 0.22 1.27
| NS25 | 68.3 59.7 26.1 24.3 0.31 0.23 1.37 p
64.5 59.0 24.1 23.3 0.34 0.25 1.26 p

Ref: Molnar et al. J. Non-Cryst. Solids 440 (2016): 12-25.




|
13 | Selection of Fracture Methodology m

Multiple crack tip geometries and loading conditions have

been explored including: Benefits: Drawbacks:

* Tensile loading of the bulk phase * Known loading conditions ’ C(t)nnecitlon to LEFM solutions / J-
integra

* Tensile loading with an internal void *  Simple to implement «  Changes the charge balance

* Tensile loading with initial notch/fracture * _Adjustable system size * Variation from crack size and geometry
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|
14 | Mechanical Loading Conditions ) m

Irwin near-field solution for crack tips: ¥ 10 .

Geometry of the notch tip and the
* Analytical solution for displacement field around a crack tip coordinate system.

o Suwito et al. J. Appl. Phys. 83.7 (1998): 3574-3582.
¢ Assumes a slit-like plane crack

* Creates a stress singularity at the crack tip

Lawn, Brian R. "Fracture of brittle solids." Cambridge Solid State Science Series (1993).

ey _fogr }% (L4 Ik - Deos(o/2) - cos(30/2)])

ugS ~ 2E 2n) 1(1 +v)[-(2k + 1) sin(8/2) + sin(36/2)]

K; = loading, E = elastic modulus, v = Poisson's ratio

Simulation

|1

\\[//
SN

/1NN

internal MD simulation sections to the external FEM simulation
in MgO, Si, and BaTi0,

Chen and Niemkiewicz. Z. Angew. Math. mech. 95.2 (2015): 165-172. Gleizer et al. Physical Review
Letters 112.11 (2014): 115501. Chen and Lee. Theo. Appl. Fract. Mech. (2010): 74-79.

* Previously used in multi-scale simulations to connect the // / / \

~_ MD l
I

Finite element mesh for near field (FEM) and atomic region
(classical MD simulations).

Chen and Lee. Theo. Appl. Fract. Mech. (2010): 74-79.



15 | Simulation Details

a) Frozen Boundary b)

« 38,400 atom structure, 150 A x 150 A x 30 A

Radial
Displacement
]

¢ Slit crack is introduced by removing neighboring
* Structure is rotated 3x to get 4 distinct initial cracks

* Boundary atoms are fixed and atomic positions are
adjusted to introduce far-field loading

* Interior atoms (radius = 6.5 nm) are integrated with a

]
canonical (NVT) ensemble ¥ | vt |

e Initial loadjng was 0.18 MPa\/m (a) Snapshot of the NS10 sodium silicate glass structure with a loaded slit crack. (b) Radial
displacement field from far-field loading conditions in NS10 sodium silicate glass structure.
Rimsza and Jones (2022). Int. J. Appl. Glass Sci submitted

* Quasistatic loading = loading increases of 0.01 MPaVm followed by 5ps of NVT to a final loading of 1.2 MPavVm

* Similar methods have been used for fracture simulations of silica in vacuum, water, and aqueous electrolyte solutions

Rimsza et al. (2018). J. Amer. Ceram. Soc. 101(4), 1488-1499., Rimsza, J. M. et al. (2018). J. Geophys. Res.: Solid Earth, 123(11), 9341-9354., Rimsza et al. (2019). Front. Mater. 6,79

From this methodology we can identify mechanisms of fracture in sodium silicate glasses.



16 | Example of Fracture Growth in NS10

S ——

1.2 MPavm

0.50 MPavm

0.18 MPavm



| Fracture Growth

Fracture growth peaks at 20 mole % Na content (NS20)

Driven primarily by more fracture events than at lower Na concentrations

1.2 MPavm Total Crack Average Fracture Longest Fracture
Growth (A Events (# Length (A

Crack Depth [A)

NSIO 4.60+0.82 7.00+2.92 0.71+0.13 2. 87i0 84
NS15 3.954+0.74 3.50+1.50 1.27+0.37 3.57+0.66
NS20 7.02+1.51 10.25+4 .44 0.78+0.29 2.60+0.46
NS25 5.67+£2.51 8.50+2.06 0.65+0.19 2.70+0.93
NS30 3.15+1.42 5.25+1.48 0.70+0.38 2.00+0.98
Consistent with previous reports?
25.0 g &
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Lower, Brow, and Kurkjian. J. Non-Cryst. Solids 349 (2004): 168-172.
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Vernaz, Larche, and Zarzycki. J. Non-Cryst. Solids 37.3 (1980): 359-365.
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Zhang, Ispas, and Kob. arXiv preprint arXiv:2205.02461 (2022).




| Brittleness and Energy Dissipation

Does the increased fracture growth in NS20 composition relate to the

brittleness of the material?

A perfectly brittle material will convert all excess energy into new fracture

surface energy
G =2y,

For systems with some amount of non-ideal behavior an energy dissipation

term (Gp,gq) can capture these additional effects
G = Gdi'ss + 2]"5

By using the change in energy and added surface area of the

value is calculated

Al

Gprss =

DISS AS 4
A derivation 1s included in: Rimsza, Jessica M., Reese
E. Jones, and Louise J. Criscenti. "Crack propagation in
silica from reactive classical molecular dynamics

simulations." Journal of the American Ceramic Society
101.4 (2018): 1488-1499.

o

.

Miechanical
[mechanical loading only)

Chemical-Mechanical Chemical

|aguesus environment and mechanical laading) (aquecus envirenment anly)

T."?

0GPa (5] 12

Rimsza et al. (2018). J. Geophys. Res.: Solid Earth, 123(11), 9341-9354.
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19 | Energy Dissipation g
5 -
6.0 4
* Energy dissipation follows a pattern similar to ¢ +- <
= =
fracture growth g :? 551
* Pre-Fracture: NS10 > NS30 > NS25 > e’
NS15 > NS20 N 50
* Post-Fracture: NS10 > NS30 > NSI15 > | —
NS20 > NS25 . | = nsis 45
| == N325
Pre-Fracture i Post-Fracture = "%
* The trend is more distinct pre-fracture, and ‘a2 04 06 0s 1o 12 T p - - .
fracture propagation may be complicating the Loading (MPa‘m ™) Na Composition (mole %)
analysis a) b) ¢
- @ NS0
Plogt l G o 25 - E Nets . T % Nezs
. otting total fracture versus results in a NS2s N80
g total fractur 5 Mpiss 0.5 MPavm | £ i
loose linear fit, with increasing fracture g | - * 7] o y
growth with decreasing G g g ¢ T 1.2 MPavm
‘e . . ?@ 154 i @
* For pre-fracture conditions, NS30 is an outlier = s £ s
e . g
§ g T - — é 4
g 10 I F""'TQ‘:' E
. = . o
What structural changes may be causing os ’
differences in energy dissipation? R e — 2
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20 | Na clustering during fracture?

12 ]
——e—— (.18 MPa"m'“ (inital)

8
. —_— 018 WP finital) ——— 018 MPa"'m'” (inital)
— —v —  1.20 MPa"m'" ffinal) — —w — 120 MPa"m"? [final) — = — 120 MPa'm'? ffinal)
10 4 — —@— —  Difference m RDF — —@— — Difference in RDF — —@— —  Difference in RDF
. ]
NS20
g s
2 T T r -2 T T r
2 4 5 8 10 5 A 6 8 10 2 4 5 8 10
MNa Ma Distance (A) Na-Na Distance (A) MNa ‘Ma Distance (A)
Limited variation in Na-Na distances with composition during loading I
Small decreases in the peaks at ~3.8 A and at ~6.0 A due to the overall
stretching of the system during loading

What about Na movement?



21 | Sodium Movement During Loading
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Na movement deviates from loading trend near the crack tip

Na movement is highest for NS20 composition
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22 | Network Movement During Loading

g- 20
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Ma Compasition (mole %)

Si Mavement (A)

—— N510
—pe {515

o MN520
—p— M52
—h— NE30

10 20 30 40 50 &0
Distance from Crack Tip (A)

Si movement (e.g., the network) is also
elevated near the crack tip

T0

Ma" Movement Relative to Si (A)

o2
0% 1 o1 4_ ,_%E Sodium movement is still faster
oo T ] %"'\\ in the NS20 structure, even if
o 01 the movement of the framework
a is removed
03 R=20A
kL] 15 20 25 30
03 - Na Composition (moke %)
0.0
032 - —8— NS10 —— NS25
—ap— WE15 —de— WE3I0
9 Nsx0 What about the

40 50 80 0
from Crack Tip (A)

T T
10 20

change in the
network structure?

Relative movement of Na results in a
compositional trend of increased Na movement
for lower Na concentrations




23 | Change in Intermediate Range Structure

6 - T —a— NS0
—y— NS15
—m— NS20
—— NS25
T —h— NS30
4 .
2 1 T

—

Regular planar n-fold rings in vitreous silica

Rino et al. Phys. Rev. B 47.6 (1993): 3053.

A Rings (Total) during Loading

1 Kings ring sizes calculated via I
1 R.ILN.G.S. code

2 4 B 8 10 King Nature 213.5081 (1967): 1112-1113. and Le Roux and Jund. " Comput.
Mater. Sci. 49.1 (2010): 70-83.

Ring Size I



| Change in Q_, Distribution

¢ Changes in Q, distribution of up to 0.08% (or ~4-8 Si with different

coordination structures)

¢ Change in Q, cancel each other out, causing less change in the connectivity

NS10

1.2
Diff
0.2
1.2
Diff
0.2
1.2
Diff
0.2
1.2
Diff
0.2
1.2
Diff

0.08+0.02
0.08+0.02
0.0
0.13+0.01
0.17+0.03
0.04
0.58+0.01
0.58+0.01
0.00
1.12+0.02
1.124+0.01
0.00
2.20+0.01
2.20+0.01
0.00

1.57+0.08
1.58+0.10
0.01
3.58+0.06
3.60+0.08
0.02
6.28+0.06
6.27+0.06
0.01
10.81£0.10
10.96+0.28
0.07
16.87+0.09
16.87+0.09
0.00

20.20£0.06
20.22+0.07
0.02
28.35+0.10
28.35+0.24
0.00
37.16+0.17
37.18+0.14
0.02
41.32+0.08
41.29+0.12
-0.02
44.994+0.05
45.01+0.05
0.02

77.92+0.17
77.89+0.16
0.03
67.78+0.06
67.72+0.35
0.06
55.83+0.15
55.81+0.16
0.02
46.66+0.17
46.54+0.33
-0.08
35.88+0.03
35.86+0.03
-0.02

Chaprntier et al. RSC Adv. (2013)

L
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0.23+0.06
0.23+0.06
0.00
0.16+0.03
0.17+0.03
0.01
0.15+0.07
0.16%0.07
0.01
0.09+0.04
0.09+0.04
0.00
0.06%0.02
0.06+0.02
0.00

3.766
3.766
0.000
3.643
3.641
-0.002
3.473
3.473
0.000
3.338
3.335
-0.003
3.147
3.147
0.000




How does the change in defects change with composition?

a) b) "
Separate out structural defects by type: N 0.5 MPa\ym i q 12 Ml?.a\/m *
* Q, Defects: Q,, Q2, Q;, Qs N N
* Coordination Defects: Si2, Si3, non- = =
bridging oxygen (NBO), three-bonded ‘% ) % .
oxygen (TBO) 3 : N i
; Y
« For NS10-NS20 the defects cancel each &7 6 J -
other out (one Q,, defect 1s removed for N ‘ e —— S L i o
each coordination defect formed) —e— Dm0 | —~— b
* For NS25-NS30 compositions, both — =~  Coord Dafec s : : . :
coordination and Q, defects are introduced R 15 2 25 % ’ " e Gonpostion e R) i

for an overall increase in defect Na Composiion (mole %)

concentration despite less formation of
surface area

Total Crack Growth (A)
4.60+0.82

3.951£0.74
7.02+1.51
5.67+2.51
3.15£1.42

Two different mechanisms? Structural
relaxation and sodium migration?




s | Conclusions

¢ Through continuous scanning with the AFM crack velocities as low as 1x10-11 m/s were measured
* Crack propagation was stepwise, with fracture events dispersed with periods of loading

¢ Strong humidity dependence is observed, as seen with previous studies

e C(Classical molecular dynamics modeling also exhibited similar step-wise fracture properties

*  Most crack growth occurred for the NS20 simulation, which was also the sodium-silicate composition with the lowest
amount of stress dissipation

¢ Two different energy dissipation mechanisms, one through sodium migration and one through structural rearrangement,
are reported

* Elevated structural rearrangement in the NS30 simulation accounted for the high energy dissipation and low amount of
fracture growth

Additional information:

*  Rimsza, Grutzik, and Jones “Inelastic relaxation in silica via reactive molecular dynamics”, (2021) J. Amer. Ceram. Soc. .

*  Rimsza, Jones, and Criscenti, “Mechanisms of fracture in aqueous electrolyte solutions”, (2019) Front. Mater. Fundlng : SNL LDRD Program

*  Rimsza, Jones, and Criscenti. “Chemical effects on subcritical fracture in silica from reactive molecular dynamics
simulations”, (2018) J. Geophys. Res.

*  Rimsza, Jones, and Criscenti. “Crack propagation in silica from reactive classical molecular dynamics simulations”,

(2018) J. Amer. Ceram. Soc. jrimsza@sa ndia.gOV
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Separate out structural defects by type:
* Q, Defects: Q,, Q2, Q;, Qs

* Coordination Defects: Si?, Si3, non-bridging oxygen |
(NBO), three-bonded oxygen (TBO) I

4 0.5 MPavm

QO
N
(Vg
W
Charge in Defacts (Total)
(=

Qs |

; | ——a——  Total Defects
| | — —» — O, Defocts

QZ | — —@——  Coord Defect
| - -
@ -ﬁ | 1 I I I '
10 15 20 25 30
Ma Composition (mole %)

* For NS10-NS20 the added defects are primarily surface area

* Surface area adds coordination defect and one Q,, defect * For NS25-NS30 compositions, both coordination and Qn defects are
per each bond breakage event introduced

I
28 | How does the change in defects change with composition? m
I



