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Machine Learning to Predict Crack Nucleation in Silica Glass

2Thanks to Mark Wilson (Sandia) and Allon Percus (Claremont Graduate University)

Timestep 0 Timestep 620

In roughly ½ of our samples, crack nuclei could be traced back to a void at step 0.



Machine Learning to Predict Crack Nucleation in Silica Glass

3Simulations by Mark Wilson (Sandia), graph analysis by Allon Percus (Claremont Graduate University)

Timestep 620 Timestep 700

In roughly ½ of our samples, crack nuclei could be traced back to a void at step 0.



Machine Learning to Predict Crack Nucleation in Silica Glass
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Timestep 0 Timestep 640

In the other ½ of our samples, crack nuclei formed away from discernible voids.



Machine Learning to Predict Crack Nucleation in Silica Glass

We tried all the intuitive and mathematically 
elegant features we could think of →

BUT none of these features showed a 
statistically significant correlation to 
proximity to a crack nucleus.
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• Kinetic energy

• Potential energy

• Strain energy

• Stress components

• Voronoi volume

• # nearest neighbors (1nn-4nn)

• Average degree (1nn-4nn)

• Min bond angle

• Max bond angle

• Coordination number

• # bridging oxygens

• Non-affine displacement

• Graph centrality

• …and many others



Machine Learning to Predict Crack Nucleation in Silica Glass

• The set of obvious, easy, or elegant 

observables in a glass is NOT necessarily 

adequate to predict, model, or 

understand the material.

• We have turned to a data-driven 

structural description of glass, sacrificing 

human intuition for descriptive 

completeness.

6https://xkcd.com/2020/



Concept: Manifold Learning / Dimensionality Reduction
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Given a set of points 𝒳 ∈ ℝ𝑛,
learn a function 𝑓:ℝ𝑛 ⟶ℝ𝑞 where 𝑞 < 𝑛
• where neighboring points in 𝒳 are neighbors in 𝑓 𝒳
• where 𝑓 𝒳 captures the important information in 𝒳



Concept: Manifold Learning / Dimensionality Reduction
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We need 3n real 
numbers to naively 
quantify an atomic 
configuration, plus n 
integers to encode 
species information.

We only observe atomic configurations in certain regions of ℝ3𝑛 × ℕ.
Enthalpy pulls atomic configurations onto a manifold.
Entropy and kinetics spread atomic configurations out on that manifold.

We want to 
parameterize 
the manifold.

𝑡3/2

𝑡3

High energy 
configurations

Unstable 
configurations

Overlapping atoms
(Pauli says no)

Or we can use 
clustering to get a 
discrete structural 
parameterization

So imagine we’re plotting configs cut out of some material
on axes spanning ℝ3𝑛 × ℕ.



A Wildly Successful Example of Dimensionality Reduction
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1 mm

lattice & 
orientation

grain boundary
(misorientation + plane)

dislocation locations 
and types

void sizes 
and shapes

Annealed Al-Cu alloy, ~10^21 atoms



Dimensionality reduction strategy
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Cut out environments

Compute generalized 
distances between 

pairs of environments

Diffusion Maps
continuous 

parameterization 
of manifold

Hierarchical 
Clustering

discrete 
parameterization 

of manifold

𝒳 =
𝑿1 𝑠1
⋮ ⋮
𝑿𝑛 𝑠2

𝑫 =
𝑑(𝒳1, 𝒳1) ⋯ 𝑑(𝒳𝑁, 𝒳1)

⋮ ⋱ ⋮
𝑑(𝒳1, 𝒳𝑁) ⋯ 𝑑(𝒳𝑁, 𝒳𝑁)

𝑓
𝑿1 𝑠1
⋮ ⋮
𝑿𝑛 𝑠2

=

𝑦1
⋮
𝑦𝑞

(𝑞 ≪ 4𝑛)

𝒳1
𝒳2

𝒳3𝒳4

This is the real 
technical challenge →



Properties of a Generalized Distance/Dissimilarity Function
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Continuity and Smoothness: the 

generalized distance is stable with respect to 

small atomic perturbations.

• An atom jumping across the cutoff radius 

won’t dramatically change the result

Completeness: the generalized distance 

between two configurations is zero iff the 

two configurations are equivalent.

Rotation Invariance: the generalized 

distance is the same regardless of frame.

Permutation Invariance: the distance is 

the same regardless of order of atoms.

Tolerates Variable Numbers of Atoms:

calculates meaningful distances between 

environments with different numbers of 

atoms.

Differentiable: the distance can be 

differentiated with respect to atomic 

positions. Important for empirical potentials.

Speed: the distance can be quickly 

calculated between a pair of atomic 

configurations.



Thinking about continuity and completeness
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Atomic Perturbation

Discontinuous Incomplete Continuous + Complete

• Bispectrum
• SOAP
• ACE

• Isograph
• Careless cutoff radius handling
• Careless rotation invariance
• Careless permutation invariance

• GIIP



The trouble with an incomplete distance function
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Demo- the vegetable cutting mat of science
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Fails to distinguish between 
dissimilar atomic configurations.



Gaussian Integral Inner Product (GIIP) Distance
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Integral inner product
of two functions

(1)

Norm of a function induced
by the inner product above

(2)

Gaussian function with standard 
deviation sigma, normalized to 1

(3)

Atomic density function 
consisting of weighted Gaussians 

centered on atomic positions
(4)

Gaussian Integral Inner Product
(GIIP)

between two configurations
(5)

Distance between two 
configurations can be calculated 

with three inner products
(6)

Orientation invariance
by minimizing over all possible 

rotations/rotoinversions
(7)

GIIP is analytically tractable in a 
computationally convenient form

(8)



Understanding the GIIP Distance – One-dimensional Example
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Atomic density function for atomic configuration 2

The GIIP between atomic configurations 1 and 2 is the integral of 
the product of their respective atomic density functions.

Atomic density function for atomic configuration 1

To find the squared GIIP distance between atomic configurations 1 and 2,
take the difference between their respective atomic density functions, 
square it, and integrate the squared difference.



Experimental two-dimensional silica

16

STM image of metal-supported silica bilayer

Microscopy published by Buechner, Lichtenstein, Heyde, Freund (2015)
Atomistic data extracted by Franz Bamer (RWTH Aachen University)
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Experimental two-dimensional silica: GIIP distance histogram
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Experimental two-dimensional silica – hierarchical clustering 
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Hierarchical clustering lets us divide the data into any number of classes.

We need about 
seven classes to 
approximate 1nn 
structure.

We need about 
400 classes to 
approximate 3nn 
structure



Experimental two-dimensional silica – 1nn clusters

19

Class A: n=670 Class B: n=30 Class C: n=3

Si
O



Experimental two-dimensional silica – 3nn clusters
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Class A: n=506 Class B: n=37 Class C: n=36

Si
O



Experimental two-dimensional silica – diffusion coordinates (1nn)
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Colored by 
clustering class



Experimental two-dimensional silica – diffusion coordinates (1nn)
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Three-dimensional EAM Ni2Nb metallic glass
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=Ni

=Nb

1nn

Simulation by Michael Chandross



Three-dimensional EAM Ni2Nb metallic glass – histograms
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Three-dimensional EAM Ni2Nb metallic glass – hierarchical clustering
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We need about 
2700 classes to 
approximate 1nn 
structure.

We need at least 
3000 classes to 
approximate 1nn 
structure.



Three-dimensional EAM Ni2Nb metallic glass – diffusion 
coordinates
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Centered on Ni Centered on Nb

Colored by 
clustering class



Three-dimensional EAM Ni2Nb metallic glass – clusters
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=Ni

=Nb

All Ni

All Nb

Closer 
to FCC?

Closer 
to BCC?

More Ni

More Nb

Centered
on Nb



Conclusions and Looking Forward
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Intuition and mathematical 
elegance aren’t adequate to 
quantify the structure of glass.

So we developed a data-driven 
structural descriptor using the 
Gaussian Integral Inner Product.

The data-driven approach does a 
good job of capturing structure in 
a granular (complete) way, but it 
costs us intuitive interpretability.

We hope that data-driven 
descriptors will complement 
more intuitive approaches and 
emerging glass characterization 
methods.


