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/~ Machine Learning to Predict Crack Nucleation in Silica Glass

Timestep O Timestep 620

In roughly %2 of our samples, crack nuclei could be traced back to a void at step O.
Thanks to Mark Wilson (Sandia) and Allon Percus (Claremont Graduate University)




/> Machine Learning to Predict Crack Nucleation in Silica Glass

Timestep 620 Timestep 700

In roughly %2 of our samples, crack nuclei could be traced back to a void at step O.
Simulations by Mark Wilson (Sandia), graph analysis by Allon Percus (Claremont Graduate University)




/~ Machine Learning to Predict Crack Nucleation in Silica Glass

Timestep O Timestep 640

In the other %2 of our samples, crack nuclei formed away from discernible voids.
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We tried all the intuitive and mathematically
elegant features we could think of >

/" Machine Learning to Predict Crack Nucleation in Silica Glass

Kinetic energy

Potential energy

Strain energy

Stress components
Voronoi volume

# nearest neighbors (1nn-4nn)
Average degree (1nn-4nn)
Min bond angle

Max bond angle
Coordination number

# bridging oxygens
Non-affine displacement
Graph centrality

...and many others




P / Machine Learning to Predict Crack Nucleation in Silica Glass

- The set of obvious, easy, or elegant

DEPR MATURE MAGAZINE,
observables in a glass is NOT necessarily T FOUND NO EVIDENCE. SUFFICENT TO REJECT
: THE NULL HYPOTHESIS IN ANY RESEARCH AREAS
adequate to predict, model, or BEEALE TOENT TE MO UEEK F A
understand the material. THE LEGEND OF ZELDA: BREATH OF THE WIL2

TLL SEND YOU ANOTHER UPDATE NEXT LEEK!

«  We have turned to a data-driven
structural description of glass, sacrificing
human intuition for descriptive
completeness.

THE PUSH To PUBLISH NEGATIVE. RESULTS SEEMS
KINDA WEIRD, BUT IM HAPPY TO GO ALONG UITH IT.

https://xkcd.com/2020/




Concept: Manifold Learning / Dimensionality Reduction

2D projection of the swissroll Unrolled manifold
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Given a set of points X € R™,

learn a function f: R®™ — RY where g <n

« where neighboring points in X are neighbors in f(X)
« where f(X) captures the important information in X
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We need 3n real
numbers to naively
quantify an atomic
configuration, plus n
integers to encode
species information.

/" Concept: Manifold Learning / Dimensionality Reduction

So imagine we're plotting configs cut out of some material
on axes spanning R3™ x N.

| Lioh nnnreng |

Or we can use

discrete structural ‘ \ > want to

clustering to get a

parameterization Jarameterize

the manifold.
_g—

Unstable

We only observe atomic configurations in certain regions of R3" x N.
Enthalpy pulls atomic configurations onto a manifold.
Entropy and kinetics spread atomic configurations out on that manifold.




A Wildly Successful Example of Dimensionality Reduction

lattice &

orientation
\ Annealed Al-Cu alloy, ~10721 atoms

void sizes
and shapes

dislocation locations \grain boundary
and types (misorientation + plane)




7 Dimensionality reduction strategy
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P Properties of a Generalized Distance/Dissimilarity Function

Continuity and Smoothness: the
generalized distance is stable with respect to
small atomic perturbations.

* An atom jumping across the cutoff radius
won't dramatically change the result

Completeness: the generalized distance
between two configurations is zero iff the
two configurations are equivalent.

Rotation Invariance: the generalized
distance is the same regardless of frame.,

Permutation Invariance: the distance is
the same regardless of order of atoms.

Tolerates Variable Numbers of Atoms:
calculates meaningful distances between
environments with different numbers of
atoms.

Differentiable: the distance can be
differentiated with respect to atomic
positions. Important for empirical potentials.

Speed: the distance can be quickly
calculated between a pair of atomic
configurations.




Thinking about continuity and completeness

Discontinuous Incomplete Continuous + Complete
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P The trouble with an incomplete distance function

Demo- the vegetable cutting mat of science

Candidate Distance

Atomic Perturbation <>.\

Fails to distinguish between
dissimilar atomic configurations.




,/ Integral inner product
of two functions

Norm of a function induced
by the inner product above

Gaussian function with standard
deviation sigma, normalized to 1

Atomic density function
consisting of weighted Gaussians
centered on atomic positions

Gaussian Integral Inner Product
(GIIP)
between two configurations

Distance between two
configurations can be calculated
with three inner products

Orientation invariance
by minimizing over all possible
rotations/rotoinversions

GlIP is analytically tractable in a
computationally convenient form
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7 Understanding the GIIP Distance - One-dimensional Example
/

Atomic density function for atomic configuration 1

Atomic density function for atomic configuration 2

The GIIP between atomic configurations 1 and 2 is the integral of
the product of their respective atomic density functions.

To find the squared GIIP distance between atomic configurations 1 and 2,
take the difference between their respective atomic density functions,
square it, and integrate the squared difference.

I|I || (pa — pa)*

|
A A \ A\




P/ Experimental two-dimensional silica

STM image of metal-supported silica bilayer
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Microscopy published by Buechner, Lichtenstein, Heyde, Freund (2015)
Atomistic data extracted by Franz Bamer (RWTH Aachen University)




Experimental two-dimensional silica: GIIP distance histogram

Histogram of Pairwise GIIP Distance (1nn) Histogram of Pairwise GIIP Distance (4nn)
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Maximum Cluster Diameter

Experimental two-dimensional silica - hierarchical clustering
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Hierarchical clustering lets us divide the data into any number of classes.

We need about
seven classes to
approximate 1nn
structure.

We need about
400 classes to
approximate 3nn
structure
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Experimental two-dimensional silica - 1nn clusters

Class A: n=670 Class B: n=30 Class C: n=3




Experimental two-dimensional silica - 3nn clusters

Class A: n=506 Class B: n=37 Class C: n=36
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/4 Experimental two-dimensional silica - diffusion coordinates (1nn)
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4 Experimental two-dimensional silica - diffusion coordinates (1nn)
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Simulation by Michael Chandross



Three-dimensional EAM Ni,Nb metallic glass - histograms

Histogram of Pairwise GIIP Distance (Ni-centered) ESDGD[ﬂiStUQram of Pairwise GIIP Distance (Nb-centered)
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Three-dimensional EAM Ni,Nb metallic glass - hierarchical clustering

Centered on Ni O

We need about
2700 classes to
approximate 1nn
structure.
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We need at least
3000 classes to
approximate 1nn
structure.
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coordinates
Centered on Ni Q Centered on Nb ‘
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/ Three-dimensional EAM Ni,Nb metallic glass - diffusion
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Three-dimensional EAM Ni,Nb metallic glass - clusters

Closer
to FCC?

All'Ni

More Ni

() =N
‘ “Nb

Closer
to BCC?

All' Nb




Conclusions and Looking Forward

Histogram of Pairwise GIIP Distance (1nn)

Intuition and mathematical So we developed a data-driven
elegance aren't adequate to o structural descriptor using the
quantify the structure of glass. . Gaussian Integral Inner Product.
The data-driven approach does a We hope that data-driven
good job of capturing structure in descriptors will complement
a granular (complete) way, but it more intuitive approaches and
costs us intuitive interpretability. emerging glass characterization

methods.




