SAND2022-6890C

This paper describes objective technical results and analysis. Any subijective views or opinions that mightlbelexpressed}in|
the paper do not necessarily represent the views of the U.S. Department of Energy or the United States'Government.

<

Sandia
National
Laboratories

Y -
= - ——
PR e oy o

Peat Fires and Climate Change:
Modeling Greenhouse Gas Emissions by 2100

Raquel SP Hakes', Sagar Gautam', Rory M Hadden?,
Matthew W Kury', Mark J Lara3, Sara S McAllister#4,
Umakant Mishra', Sarah N Scott’

'Sandia National Laboratories, Livermore, CA, USA

2University of Edinburgh, Edinburgh, UK

3University of Illinois at Urbana-Champaign, Champaign, IL, USA
4United States Forest Service, Missoula, MT, USA

ENERGY NS
Wi e Iy At frafu
Sandia National Laboratories is a
multimission laboratory managed
and operated by National Technology
& Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of
Honeywell International Inc., for the
U.S. Department of Energy’s National
Nuclear Security Administration under
contract DE-NA0003525.

24 May 2022
IAWF Fire & Climate Conference
Pasadena, CA

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering [SolutionsfofiSandia,|LLC, alwhollylowned!
subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administrationfundercontract DE-NA0003525.



> | The Peat Fire Problem

« Peat < 3% of land, but contains 25% of terrestrial
carbon

 Arctic peat plentiful in boreal forest and tundra
» Fires increase with climate change

« Peat becomes a carbon source

* Peat fires release substantial CO, and other
greenhouse gases

- Estimates of emissions contain large uncertainties

* Overwhelming uncertainty in mass of peat
consumed

M Peatland density M Wildfires (June-August 2020)

July 8th 2019
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3 | Huang and Rein Physically-Based Peat Fire Model

- Development of reaction mechanism . | Airflow!
* Drying: . T
*  Wet peat — Dry peat 7 =0- Emission

« Charring:
*  Dry peat — Alpha-char
*  Dry peat + O, — Beta-char

 Ash production $pre§1d
*  Alphachar + O, — Ash direction
*  Betachar + O, — Ash
* 1D peat fire modeling
*  Burn depth
« Critical ignition conditions
z=1

- Determination of key soil properties
* Moisture content (MC) Huang et al (2015) ProCl

« Percentage soil organic matter
* Bulk density

Huang and Rein (2014) Combust Flame; Huang et a/ (2015) ProCl; Huang and Rein (2015) [JWF; Huang and Rein (2017) [JWF



+ 1| Research Approach

Overarching goal: Determine effects of soil properties that change with climate to
determine which have the largest impact on emissions from Arctic peat

Approach: Explore the parameter space of climate predictions

1. Investigate climate predictions under high emissions scenario (SSP5-8.5 CMIP6)
2. Determine how atmospheric climate predictions influence soil properties

3. Vary soil properties between present and future values in 1D peat model
=  Atrepresentative locations in Alaska

= Compare mass burned/emissions quantities




s | Changes in July Temperature and Precipitation by 2100

Temperature Precipitation

Temperature (°C)
Precipitation (mm)

Temperature increases across the state Areas of precipitation increase and areas of
decreased precipitation

High emissions scenario (SSP5-8.5) 30-year ensemble-averaged from CanESM, CESM, BCC, and UKESM models



s | How Atmosphere Affects Soil Properties

«  We don't know how climate will explicitly change some
properties
« Combined effects of climate and fire
* Soil organic carbon

* Soil bulk density

(8/kg)
Bulk density (g/cm3)

Soil organic carbon content




7 | Representative Tundra Locations in Alaska
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o | Matrix of Soil Conditions

Soil properties vary with depth

« Simulate first 12 cm of peat soil

Hold current bulk density constant

Compare current and future July temperatures

« Use air temperature for soil

Range of moisture contents

o

Yukon
Kuskokwim
Delta

Deadhorse/
Prudhoe

Kobuk River

Delta

Soil bulk density

Current July
temperature

Future July
temperature

Current MC

Simulated MC Range




* Implement Huang and Rein’s 1D model in Sierra Thermal/Fluids: Aria
* 12 cm column at 0.8 mm resolution
« 7200 s (2 hr) simulation time

* Model inputs
« Siberian transition-moor kinetics
« Reaction mechanism and material properties from Huang and Rein
* Modified densities, porosities, heats of reaction

I
0o 1 Modeling Methods m
I



11 | Results for Yukon Kuskokwim Delta

— 9.0C, 1.0% MC
— 9.0C, 10.0% MC

12.1 C, 1.0% MC
12.1 C, 10.0% MC

Yukon Kuskokwim Delta

* Tundra location — 9.0C, 20.0% MC —— 12.1C, 20.0% MC -
»  Soil bulk density = 403 kg/m?3 1.4 — 9.0C,300%MC —— 12.1C, 30.0% MC
— 9.0C, 40.0% MC —— 12.1 C, 40.0% MC
* Drop in mass loss rate when full 1.2
column of wet peat has dried ol Increasing MC
 No difference between currentand 4 E—)
=
future temperatures 508 Pyrolysis +
« MC has clear effect = oxidation
£06 (——
5 | | |
< 0.4/ Drying + pyrolysis +
oxidation
0.2
0.0
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> | Comparing Between Locations

 Different locations represent
different soil bulk densities

« Higher density of soil slows reaction
down

* 10 cm of peat burn through for
Yukon Delta and Deadhorse

*  Kobuk Delta doesn’t burn through
« 30-40% MC Kobuk Delta burned out

1.0

Normalized mass [-]

©
N

0.21

20% Soil Moisture Content

—— Deadhorse, 379 kg/m?
—— Yukon Delta, 403 kg/m?
—— Kobuk Delta, 489 kg/m?

>

Pyrolysis +
oxidation

—

Drying + pyrolysis +
oxidation
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13 | Results for Yukon Kuskokwim Delta
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4 | Total Mass Loss From Dried Peat @!
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 Total mass lost increases with F O @ ©
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« Small variation of dry mass lost
with increasing MC

* Increasing mass lost for lower
MC peat
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* Dry mass loss directly related to
gas emissions

Dry mass lost (kg/m?)
N
o

15
e 1.0% MC
100 v 10.0% MC
¢ 20.0% MC
5/ Ao 30.0% MC
m  40.0% MC
0 [

360 380 400 420 440 460 480 500
Soil density (kg/m?3)



« MC and density have clear impact on mass loss, burn depth, and mass of emissions

« Soil temperature for this range has negligible impact on mass burnt, but air
temperature may be important for soil MC

» Locate vulnerable peat sources through combination of location and moisture changes

« More research needed into fires in the arctic, including ignition predictions (e.g.
lightning) that will trigger peat fires

«  Future work
« Use samples from Arctic locations to determine kinetic parameters and properties

« Explore more Arctic locations, including boreal peat, and how active layer affects emissions
* Investigate how air temperature and precipitation affect soil MC for different topographies

I
s | Conclusions and Future Work @!
I

THANK YOU! QUESTIONS? |
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|
7 IEarth System Modeling vs Physically-Based Modeling of Peat Fires @!

Earth System Models Physically-Based Models

present and future climate

Peat fire representation in E3SM
* Peat maps

« Peat represents arbitrary fraction of
grid cell that can burn

 Function of soil moisture and
temperature

Outputs
 Burn area

* Emissions (as function of burn area)

« Earth systems models simulate the « Solve governing equations for mass,

species, and energy
« Gas and solid phase

* Myriad inputs required
 Reaction mechanisms, material
properties

* Outputs
* Burn depth

« Mass burnt and mass burning rate
« Reaction rates

- Rate of spread

«  Temperature profiles



18 | Reaction mechanisms
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Climate Models Used and Soil Data

CanESM
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BCC

 Wu,T, Lu, Y, Fang, Y, Xin, X,, Li, L., Li, W., ... & Liu, X. (2019). The Beijing Climate Center climate system
%%%el (BCC CSM) the main progress from CMIPS to CMIP6. Geoscientific Model Development, 12(4), 1573-
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