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Motivation: Science/Technology

Resistive and extended MHD models
are used to study important multiple-
time/ length-scale multiphysics plasma
physics systems
= Astrophysics and Planetary-physics:

= Magnetic reconnection, instabilities,

» Solar flares, Coronal Mass Ejections.
= Earth’s magnetospheric sub-storms,

= Aurora, Planetary-dynamos.
» Fusion & High Energy Density Physics:
= Magnetic Confinement [MCF] (e.g. ITER),

= Inertial Confinement [ICF] (e.g. Z-pinch, NIF).

. Induction

1.56

Fluid stream
lines

Magnetic field

flux tubes

MHD VMS-LES MHD Turbulence Modeling Taylor-Green Vortex Decay.
lllustration of non-universality of total MHD energy turbulent decay spectrum
[with D. Sondak (Harvard), A. Oberai (USC)]



General Mathematical / Computational Science Motivation:

Achieving Roust Scalable Simulations of Strongly Coupled Nonlinear Multiple-
time-scale Multiphysics Systems to Enable
= Predictive, Accurate, and Efficient Longer Time-scale Computational Simulations

= Beyond Forward Simulation: Design/Optimization/UQ

» Physics / Mathematical Model Validation, Experimental Data Interpretation & Inference



These systems are characterized by a myriad of complex, interacting, nonlinear multiple time-
and length-scale physical mechanisms.

These mechanisms:

- can be dominated by one, or a few processes, that drive a short dynamical time-scale
consistent with these dominating modes,

Explicit methods

- consist of a set of widely separated time-scales that produce a stiff system response,

- nearly balance to evolve system on dynamical time-scales that are long relative to component time scales,

- or balance to produce steady-state behavior.

Some implicit aspect required

E.g. Fusion Reactors (Tokamak -ITER; Pulsed - NIF & Z-pinch); Fission Reactors
(GNEP); Astrophysics; Combustion; Chemical Processing; Fuel Cells; etc.




Our Mathematical Approach - develop:

Stable, higher-order accurate implicit/IMEX formulations for multiple-time-scale systems

owpy 171 EIE343)

Structure Preserving FE

Stable and accurate unstructured FE spatial discretizations. Options enforcing key
mathematical properties (e.g. structure preserving forms: div B = 0; positivity P P

Robust, efficient fully-coupled nonlinear/linear iterative solution based on Newton-Krylov

methods

Scalable and efficient multiphysics preconditioners utilizing physics-based and approximate

block factorization/Schur complement preconditioners with multi-level (AMG) sub-block solvers

=> Also enables beyond forward simulation: Design/Optimization/UQ ( e.g. Adjoints - error

estimates, sensitivities; surrogate modeling (E.g. GP), ...)

[e.g. Steady state adjoint analysis of MHD duct flows; Hartmann problem, MHD Generator]
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E.g. Multiple-time-scale Multiphysics System: Magnetic Confinement Fusion

Goal for Fusion Device:

« Attempt is to achieve temperature of ~100M deg K (6x Sun temp.) ,

* Energy confinement times O(1 - 10) min. are desired.

* Understanding and controlling instabilities/disruptions in plasma
confinement is critical

(ITER)

Strong external magnetic fields used for:
* Resistive heating of the plasma (along with RF-EM waves, ..)

« Confinement of the hot plasma to keep it from striking the wall
« Plasma disruptions can cause break of confinement, huge plasma

thermal energy loss, and discharge of very large electrical currents
(~20MA) to surface and damage the device.

« ITER can sustain only a limited number of significant disruptions, _
O(1 - 5). International Thermonuclear

Experimental Reactor
[under construction,
Cadarache facility France]



E.g. Multiple-time-scale Multiphysics System:
Magnetic Confinement Fusion (MCF)

MCF Devices (e.g. ITER) are characterized by large-range of time and length-scales
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DOE Office of Science ASCR/OFES Reports: Fusion Simulation Project Workshop Report, 2007,
Integrated System Modeling Workshop 2015
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5 Moment Full Maxwell EM Multifluid Plasma Model: p|lu| [e] JET< B
Multiple Atomic Species [e.g. structure preserving formulation] Nodal FE Hydro and Structure-prexerving
discretization for EM
Conservation / Balance Eqn.
Mass|[0] [0] [0]
thS+V-[p3us):C5 + S,
Momentum[1] 1 1
at [psus) + V . [psus ®ll3 + psl+ﬂs) — qsns (E +u$ X B) +c.£- ] +S£ ]
Total _ [2] 2]
Energy[2] atgs‘l‘V'[(83+ps)u3+u3'ﬂs+hs] —qsnsus'E‘I‘CS +SS
Charge / _ _
Current q= ; slts J= ZS, qsnsUg
Maxwell’s 1 q Important involutions that the
Egn. —2a;E —VxB+ ﬂ{)] =0 V-E= — continuous system satisfies.
c €o Structure-preserving methods
. enforce these in an appropriate
aIB +VxE=0 V-B=0 discrete sense.

Braginskii, Rev. Plasma Phys. 1965; E. T. Meier and U. Shumlak PoP, 2012;



A Reduced length-scale/time scale representation; Basic single fluid IO
Resistive MHD [e.g. 3D H(grad) Variational Multiscale (VMS) Stabilized FE] u P T B W

Resistive MHD Model in Conservative Form

0
—p—i-V'(pv):O

ot T=-[P- ;N(V V)T + p[Vv + Vv
opv B

8Etot

1 1
S 4V [(pe + SIIVIP)v - (T -) vi+hl=0  Sw=pet §p||u||2-

We use elliptic

cleaning and VMS
stabilization for
smooth problems

* Divergence free involution enforced as constraint with a Lagrange multiplier (Elliptic, parabolic, hyperbolic)
[Dedner et. al. 2002; Elliptic: Codina et. al. 2006, 2011, JS et. al. 2010, 2016]
» Only weakly divergence free in FE implementation (stabilization of B - ¢boup|ing )

* Relationship with projection (Brackbill and Barnes 1980), and elliptic divergence cleaning (Dedner et. al, 2002), (JS et al. 2016).

- Issue with C° FE for domains with re-entrant corners / soln singularities
[Costabel et. al. 2000, 2002, Codina, 2011, Badia et. al. 2014]



Why Newton-Krylov Methods?

Convergence properties F(X, 2,2 2s.) = 0
+ Strongly coupled multi-physics

Inexact Newton-Krylov

. Jp, +F(x
ofterr requires a strongly coupled Solve Jp, =_F(x ), urti [V, +F&x,) .
nonlinear solver F <)
- Quadratic convergence near X1 =X, +OpP,
solutions (backtracking, adaptive
convergence criteria) Jacobian Free N-K Variant
Mp, =v
+ Often only require a few iterations Ip, = F(x+p,)-F(x) . orby AD

to converge, if close to solution, 6
independent of problem size See e.g. Knoll & Keyes, JCP 2004




Why Newton-Krylov Methods?

Fully-implicit / IMEX transient

Convergence
Properties




Why Implicit / IMEX Newton-Krylov Methods?

Direct-to-steady-state

FGX A A A) =0 Stability, Accuracy and Efficiency

- Stable (stiff systems)
Z’g',m - High order methods (e.g. BDF, DIRK, IMEX, etc.)
C

Ew +V 0([pcu]n+l) -V O[D"”Vc"”]+ §™'=0

- Variable order techniques
» Local and global error control possible

- Can be stable, accurate, and efficient when run at the dynamical

time-scale of interest in appropriate multiple-time-scale systems
(e.g. Knoll et. al., Brown and Woodward., Chacon and Knoll, S., Ober, JS. and Ropp)




Why Implicit / IMEX Newton-Krylov Methods?

Direct-to-steady-state




Resistive MHD: Soloveev Analytic Equilibrium
Nonlinear Disturbance Saturation (VMS Q1).

Tlme = OOOO L ldmilvs. Time

0.1

0.01

_RHO_UVEC

0.000e+00

Kink and interchange instability.

MHD Wave speeds

6.611e-01

4.958e-01

3.306e-01

1.653e-01 6.829¢-
0.000e+

Approx. Computational Time Scales:
* B Divergence Const. (v-B=0): 1/0© =0
- Fast Magnetosonic Wave (c;): 10 to 10”7

« Alfven Wave (c,): 10 to 10”7

« Slow Magnetosonic Wave (cs): 102 to 10-%?
« Sound Wave (c): 10 to 103
* Advection (Cy max): ~ 102

- Diffusion: 103 to 102

*Macroscopic Dynamic Time-scale:
unstable mode: o(1)

Fully-implicit (BDF2, SDIRK22)
Max CFL:

CFLy, = 00

CFL, ~ 10°

CFL., ~ 10

CFL, ~1

CFL. ~1

CFL, ~ 0.1

lall, [Ju]| £ cs, [[u]| £ ca, [Jul| £ cf,2cn Here chis oo for elliptic divergence cleaning



Isentropic EoS

PPy
Py £0

Preliminary Evolution / Growth Rate for Solovev Equlibrium Instability

1.0E+00 Fine Mesh (900K elem.)
Medium Mesh ‘ y=1 Medium Mesh (230K elem.)
Coarse Mesh [ 7/ - Coarse Mesh. (96K elem.)
1.0E-01 > 4 L

V4

E , Instability growth rate
v=1
1.0E-02
a =1.94 Drekar
a=2.0 Chacon
1.0E-03 {HR"“ st v = 5/3
a = 1.69 Drekar
a=1.7 Chacon
1.0E-04 = !
0 1 2 3 4 5 6 7 8
Time

[Comparisons with L. Chacon and PIXIE 3D code (LANL)]



Multifluid Simulation of a Diocotron Instability of an Electron Beam Diocotron instabilities are driven by velocity
In a Uniform Axial Magnetic Field shear created by ExB drift velocities in non-
neutral electron columns. A sufficiently
strong shear in this rotational velocity drives
the development of the cylindrical diocotron

Comparison with Linear Stability Theory [1,2,3]

Electron Density le-6 Radial Velocity E Theta - HH
e - instability.
60
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o8 10 10 10 1072 T T T
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5 —— 16K Elements P
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@ —
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15 15 40 N Time
1 . Multifluid growth rate vs mesh resolution
10 10 =
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——— Theoretical
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[1]Ronald C Davidson. Physics of Nonneutral Plasmas. World Scienti c Publishing, 2001. 1075 n >0 o 70
[2] W. Knauer. Diocotron instability in plasmas and gas discharges. Journal of Applied Physics, 37(2):602{611, 1966. Time

[3] J. Petri. Relativistic stabilisation of the diocotron instability in a pulsar and cylindrical electrosphere. Astronomy &
Astrophysics, 469(3):843{855, 2007.

Generalized Ohm's law without electron inertia



lllustration of Time-scales and an IMEX Partition for Multi-fluid Plasma System Model

lonization/recombination

Density 0rps HV: (Psus) = —Pshe (Is!Rs) + Mghe (N - T- - +n - R
v Cyclotron frequency
at (psus) +V * (psus ®u$ + psl+ﬂs) = qsns (E+us X B) + Z as'tpsp[(ut _us)
Momentum A — ¢ [ZS Collisional
—psUshe (Is + Rs) + - RNePs—1Us—1 Is—/’ (neps+1us+1 + ns+lpeue) Rsy1
s—1
, I Strong off diagonal 2
3:Es+ V- [(Es+ ps)us+u;-TT +h| = gsnoug-E ; coupling for Ty — Ts) + my (U — ug)?]
Energy m plasma oscillation
—Esne (Is+ Ry) + ] NeEsfils 1+ (Ne€si1 + Nsi1€e) Re1
s—1
Charge
and q= quns J= qunsus
) N
Current
1 q
Maxwell’s C—zarE—VX + ) =0 V-E= o
. 0
Equations Light wave off
0B+VXxE=0 diagonal coupling V-B=0
[ ]
IMEX RK: M (] +

Time Integration

+G =0

Implicit EM, EM sources, sources
for species interactions (fast)

Explicit Hydrodynamics
(slow)

S. T. Miller, E. C. Cyr, JS, R. M. J. Kramer, E. G. Phillips, S. Conde, R. P. Pawlowski, IMEX and exact sequence discretization of the multi-fluid plasma model. JCP, 2019

Other work on
multifluid plasma
formulations,
solution algorithms:

See e.g.

Abgral et. al.;
Barth;

Kumar et. al.;
Laguna et. al,;
Rossmanith et. al.;
Shumlak et. al.;

B. Srinivasan et. al.;




Multifluid Model: Implicitness and IMEX used to handle Multiple-time-scales

lllustration for a particular example (e.g. high resolution mesh ( small Az ) and lower density plasmas)

TEM S Twpe S Twce S Twpi STwciS TC@ S Tue S TC'Z S Tuz

P _—
IMPLICIT \ EXPLICIT

Fully Fully
EXPLICIT IMPLICIT

Of course stability does not imply accuracy.




Why Implicit / IMEX Newton-Krylov Methods?

Direct-to-steady-state




Demonstration / Verification of Implicit Solution for Longitudinal Electron p|[pu

/1\

& E(4gBpP

Plasma (LEP) Oscillation with a Highly Under-resolved TEM Wave (SDIRK?22) 42 re Hydro and Structure_prefervmg

At =0.1%7, ~ 10* % s (on 3200 fine mesh)

w [radian/s]

LEP
— RCP

— LCP

e o Drekar LEP
e o Drekar RCP-L
= ® Drekar RCP-U
o o Drekar LCP

1081

10° I T
1072 107! 10° 10t
k [radian/m]

LEP: Longitudinal Electron Plasma Wave
RCP: Right Hand Circularly Polarized Wave
LCP: Left Hand  Circularly Polarized Wave
(Cold plasma)

Relative L2 error norm

1077

=
<
=~

discretization for EM

Error at 14.875 periods

U oop

LEP

(=]
[

Elements per wavelength

Verification effort with Niederhaus, Radtke,

Bettencourt, Cartwright, Kramer, Robinson and

ATDM EMPIRE Team



Demonstration of Accuracy for Implicit Solution Methods for Langmuir wave (i.e. Longitudinal Electron
Plasma [LEP] Oscillation): Fast time-scale unresolved transverse EM (light) waves (Ne = 1015)

% Error in Electron Plasma Freq., Ne = 10%5

% Error in Electron Plasma Freq., Ne = 10%5
(over 15 periods, 250 elem. / wave length) (over 15 periods, 250 elem. / wave length)
1.0E+00 1.0E+00
Drekar Implicit SDIRK22 -Drekar Implicit SDIRK22
“®Drekar Explicit RK “#Drekar Explicit RK
375 time steps (25 per period)
375 time steps (25 per period)
1.0E-01 1.0E-01
s | Implicit in this case 5 Implicit in this case
w . w .
= | ~1000x larger At with same error ® ~50x faster with same error
1.0E-02 — 1.0E-02 —
Explicit . Explicit
3 x 10° time steps (2 x 10° per period) 3000 time steps 3000 time steps 3 x 106 time steps (2 x 105 per period)
sdisssnsssssssssEEEEEEEEEEEEEEEEEEnnnnnnnnnnnnnnnnnnnngfannnnnnnnnnnnnnnnnnnnnEEE 000000000000 AN S A S S S S SR RN R R RSN NN NN NN EEEEEEEEEEEEEEEEE " LLLLLLLLLLLLL]
9.6 x 10° time steps 9.6 x 10° time steps
1.0E-03 1.0E-03
1.0E-01 1.0E+00 1.0E+01 1.0E+02 1.0E+03 1.0E+02 1.0E+03 1.0E+04 1.0E+05
CFLEM Total Simulation Time.

Note: Explicit solver is not highly optimized. Explicit is 20x — 30x faster per time step.



Why Implicit / IMEX Newton-Krylov Methods?

Direct-to-steady-state F

Stability || Accuracy || Efficiency

What | am not implying: Fully-implicit / IMEX is the only way to get these properties

What | am implying: Fully-implicit / IMEX are excellent ways to get these properties along
with a number of other benefits when applied to multiple-time-scale multiphysics systems



Why Implicit/IMEX Newton-Krylov Methods?

| el

Direct-to-steady-state Fully-implicit transient / IMEX
Convergence Optimization, -
Properties [ uaQ Stability || Accuracy || Efficiency
Characterization
Complex Soln. Spaces




Scalable Preconditioning for Systems

1. Fully-coupled Algebraic Multilevel (AMG) Methods: (ML & Muelu; Tuminaro, Hu et. al.))

* Consistent set of DOF-ordered blocks at each node (e.g. CG VMS/Stabilized FE)

* Uses non-zero block graph structure of Jacobian u P T B
* Additive Schwarz DD ILU(k) as smoothers (Jacobi & GS possible for transients)
* Can provide optimal algorithmic scalability

2. Approximate Block Factorization / Physics-based (Teko; Cyr, JS, Tuminaro, Phillips)

* Applies to mixed interpolation (FE), staggered (FV), and structure preserving

VPaz’tition (64 Procs.)

discretization approaches using segregated unknown blocking o1 ul Tl [E

<

>

v
* Applies to systems where coupled AMG is difficult or might fail (e.g saddle pt. systems, coupled hyperbolic eqns.)

* Enables specialized optimal AMG, e.g. H(grad), H(curl) for disparate discretization spaces.

* Can provide optimal algorithmic scalability for coupled systems

3. Monolithic Multigrid Enabled by Schur-complement Structure Aware Smoothers
(Vanka et. al, Farrell et. al, MacLachlan et. al., ....)



A Few Examples of Scalability of Full System Projection AMG
for 3D Variational Multiscale Stabilized Resistive MHD I_II_PII?IEBIIEI

Important for

 scalable solver for uniform / consistent (DOF) of discretizations

» Sub-block system solvers for approximate block factorizations / physics
based approaches



3D H(grad) Variational Multiscale (VMS) / AFC formulation

Resistive MHD Model in Residual Notation

T=-[P- 2M(V V)L + p[Vv + V7]

@—l-v (pv) =0 31 1

ot Py = T = —B®B-_-—|B|’I
Mo 240

0

%‘FV'[/)V@V—(T-FTM)] =0

8215015
ot

B
8(9_t+v' B®v—v®B—Mi(VB—(VB)T)+¢I =0
0

1 1
+ V- [pe 4 GIIVIPV — (T +Tag) v bl =0 Bop = pe+ opllul” + [BI* /250

V-B=0

+ Divergence free involution enforced as constraint with a Lagrange multiplier (Elliptic, parabolic, hyperbolic)
[Dedner et. al. 2002; Elliptic: Codina et. al. 2006, 2011, JS et. al. 2010, 2016]

* Only weakly divergence free in FE implementation (stabilization of B -wcoupling )

S
All nodal H(grad)
elements using

VMS stabilized

weak form for the
(U,P) and (B,%))

saddle point

problems.

F,, BT 0]

B Cp 0 0
0 Fg B

0 0 B Cy]

» Can show relationship with projection (e.g. Brackbill and Barnes 1980), and elliptic divergence cleaning (Dedner et. al, 2002) [JS et. al. 2016].

- Issue for using C° FE for domains with re-entrant corners / soln singularities [Costabel et. al. 2000, 2002, Codina, 2011, Badia et. al. 2014]



Large-scale Weak Scaling Studies for Cray XK7 AND BG/Q; VMS 3D FE MHD
EI EI EI (similar discretizations for all variables, fully-coupled H(grad) AMG)

Avg. Linear lts.

Weak Scaling: Avg. Linear Iters. / Newton Step
3D MHD Generator. Re = 500, Re_, = 1, Ha = 2.5; (Steady State)

Weak Scaling: Avg. Linear Solve Time / Newton Step
3D MHD Generator. Re = 500, Re,, = 1, Ha = 2.5; (Steady State)

1000 - 200
4*Titan DD ILU(1),0v=1 < “*Titan DD ILU(1), ov=1
900 |~ &Titan ML FC-AMG ILU(0), ov =1, v(3,3) @ 175 |[“®Titan MLFC-AMG ILU(0); ov =1, V/(3;3)
800 | +~BG/Q ML FC-AMG ILU(0),0v=1, V(3,3) ! 2 o BG/Q ML FC-AMG ILU(0),0v=1, V(3,3)
700 BG/Q Muelu FC-AMG ILU(0), ov=1, V(1,1) = = BG/Q Meulu FC-AMG ILU(0), ov=1, V(1,1) ~20x
£ 135

600 4096x increase in prb. size 3 4096x increase in prb. size

500 : % 100
[

400 5

300 BG/Q: 1M & BG/Q: 1M
< 50 \l/

200 \l/ /

100 / 25 P w Titan: 128K
. . - g . e BG/Q 256K
1.0E+05 1.0E+06 1.0E+07 1.0E+08 1.0E+09 1.0E+10 1.0E+05 1.0E+06 1.0E+07 1.0E+08 1.0E+09 1.0E+10

Unknowns Unknowns

Largest fully-coupled NK-AMG unstructured FE MHD solves demonstrated to date:

MHD (steady) weak scaling studies to

Poisson sub-block solvers:

256K Cray XK7, 1M BG/Q
Largest demonstration computation MHD (steady): 13B DoF, 1.625B elem, on 128K cores
4.1B DoF, 4.1B elem, on 1.6M cores BG/Q

Lin, JS, Hu, Pawlowski, Cyr, Performance of Fully-coupled Algebraic Multigrid Preconditioners for
Large-scale VMS Resistive MHD, J. Comp. and Applied Math, 344 (2018) 782-793



Weak Scaling for VMS 3D Island Coalescence
Problem: Driven Magnetic Reconnection
[S =103, dt = 0.1]

[w][P]1[B][r] (similar discretizations for all variables,
fully-coupled H(grad) AMG)

Weak Scaling Study: 3D Island Coalescence
Driven Magnetic Reconnection Problem

40
-~Avg. Time (sec.) / Time Step
35 “~Avg. Gmres Steps / Time Step
30 32K unknowns per core
" (Scaling of total time with I/O included) -~
25 Scali . . S =104
o e caling with Lundquist No. (Re as well).
g 20 Lundquist No. S Newt. Steps / dt  Gmres Steps / dt
15 1.0E+03 1.36 5.2
256x256x256 5.0E+03 1.43 5.7
10 64cores 512 cores 4096 cores 1.0E+04 1.51 6
1 core 8 cores o
5 —_—— 5.0E+04 2 9.8
I 1.0E+05 2 12
1.0E+04 1.0E+05 1.0E+06 1.0E+07 1.0E+08 1.0E+09 5.0E+05 2 8.4
Number of Unknowns 1.0E+06 2 8.4
JS, Pawlowski, Cyr, Tuminaro, Chacon, Weber, Scalable Implicit Incompressible Resistive BDF2 NK FC-AMG ILU(fill=0,0v=1), V(3,3)

MHD with Stabilized FE and Fully-coupled Newton-Krylov-AMG, CMAME 304, 1-25, 2016 Mesh: 128x128x128, dt = 0.0333.



Approximate Block Factorization / Physics-based Preconditioning

* Applies to mixed interpolation (FE), staggered (FV), physics compatible
discretization approaches using segregated unknown blocking

* Applies to systems where coupled AMG is difficult or might fail
(e.g. Hyperbolic systems with strong off diagonal physics coupling)

* Enables specialized optimal AMG, e.g. H(grad), H(curl) for disparate discretizations.



lllustration of Time-scales and an IMEX Partition for Multi-fluid Plasma System Model

lonization/recombination [diagonal (s)/off diagonal (s,t)]

Density 0rps HV: (Psus) = —Pshe (Is!Rs) + Mghe (g - T - +n R

pu| | £ | JE |<

v Cyclotron frequency
0y (psus) +V- (Psus dU; + Plerﬂs) =gsns(E+us; xB) + Z As;tPsPr (U —Uy)

Momentum A A G
—psUshe (Is + Rs) +

Collisional

m

s—1

NePs—1Us—1 Is—/’ (neps+1us+1 + ns+lpeue) Rsi1

, T y Strong off diagonal
3:Es+ V- [(Es+ ps)us+u;-TT +h| = gsnoug-E coupling for

Energy plasma oscillation

T —Ts) + my (ug — Us)z]

o

msg
—Esne (Is+ Ry) + NeEsfils 1+ (Ne€si1 + Nsi1€e) Re1
s—1

Charge
and 6]=qus ]:qunsus
Current ° ’

1 q
Maxwell’s C—zafE—Vx + o) =0 V-E= -

. 0

Equations Light wave off

0B+VXxE=0 diagonal coupling V-B=0

IMEX: Time  N[U  + + G =0

Integration

Explicit Implicit EM, EM sources, sources for
Hydrodynamics species interactions

<@ >

Other work on
multifluid plasma
formulations,
solution algorithms:

See e.g.

Abgral et. al.;
Barth;

Kumar et. al.;
Laguna et. al,;
Rossmanith et. al.;
Shumlak et. al.;

B. Srinivasan et. al.;




lllustrate Physics-based and Approximate Block Factorizations with Simple Example
Strongly Coupled Off-diagonal Physics & Disparate Discretizations (e.g. structure-preserving)

du OJv Ov  Ou

ot o0z’ ot Oz

Fully-continuous Wave System Analysis: Fully-discrete:
Approximate Block Factorizations & Schur-complements:

Ju Ov v Ou [T —AtC,| [urt? u® — AtCv"

ot ox Ot Oz —-AtC, I ] lv"“] B lv" —AtCmu"]

2 2 2 2 _
Ou_ 0w _ 0w O DU [1Uup][Di-uD;'L 0 [ I 0
ot2  Otdx  OxOt  Ox2 L Dy| |0 I 0 Dy || Dy'L I
Discrete Sys.: E.g. 2nd order FD (illustration) The Schur complement is then

(I — BAt* Ly )u™ = F» Dy —UD;'L = (I — AC,Cy)as (I — A2Lyy)

Recall: This is motivating how we develop preconditioners, not for developing solvers.
The NK method still seeks the solution to the original nonlinear/linear system residual!

[w/ L. Chacon (LANL) ]



Physics-based and Approximate Block Factorizations:
Strongly Coupled Off- Diagonal Physics & Disparate Discretizations (e.g. structure-preserving)

D U I UD;Y ][ Dy-UDy'L 0 I 0
L Dy 0 I 0 Dy || D'L I

Dy —UDF'L = (I — At*C,C,) ~(I — At*Ly,)
Result:

1) Stiff (large-magnitude) off-diagonal hyperbolic type operators (blocks) are now combined onto
diagonal Schur-complement operator (block) of preconditioned system.

2) Partitioning of coupled physics into sub-systems enables exisiting SCALABLE AMG optimized for the
correct structure preserving spaces e.g. H(grad), H(curl), H(div) to be used.
(e.g. Teko block-preconditioning using Trilinos ML/Muelu; FieldSplit in PetSc with Hyper)

Still Requires:
3) Effective sparse Schur complement approximations to preserve strong cross-coupling of physics and

critical stiff unresolved time-scales, and be designed for efficient solution by iterative methods.

[w/ L. Chacon (LANL) ]



Extending the Simple Example

A coupled convection diffusion problem with periodic BCs
and u=sin(2mnx), v=cos(2mx)

(o i o ) 1] o

Three time-scales of interest

CFL < 1 roughly the
explicit stability limit varies with
temporal / spatial discretization




Block Preconditioning and Time-Scales (e.g. FD discretization coupled
convection/diffusion/first-order wave coupled system)

~I+dD+aC cC u o\
cC ~I+dD+aC v o)

Dl ( +I+dD+aC CC>
sc =

Ry
R,

0 S ) |S=xl+dD+aC-cC(3I+dD+aC)7'C
+1+dD+aC 0 +I+dD+aC cC
— | At — At
& ‘( 0 Aitudmac) PGS‘( 0 AitIerDJraC)

*Only the upper diagonal of the block LU factorization is used in the Schur-complement
as in Murphy, Golub, Wathen SISC 2000 -> 2 iterations in GMRES for exact inversion of sub-block solver and Schur complement.



Block Preconditioning and Time-Scales (e.g. FD discretization Implicit coupled
convection/diffusion/first-order wave coupled system)

AVG. outer iterations in the dof based block factorization linear solver

CFL.]1072 10~' 10° 10' 107 CFL.|1072 10~' 10° 10' 10°
GS 2 3 67 231 414 GS 2 3 5 13 30
J 3 5 125 465 500 J 3 4 9 2 78
SC* 2 2 2 2 2 SC* 2 2 2 2 2
CFL,=1,CFL;=1 CFL,=1,CFLy; =10

Schur complement is important when
unresolved coupling time-scale is fast

Jacobi and GS are effective when coupling is “less important”; Block diagonal
dominance, M-matrices, one directional coupling, etc. (see e.g. Axelsson, Neytcheva,
NLAA (2013), Elsner, Mehrmann Num. Math (91), Y. Saad, Iterative Meth. Book 2003)

*Only the upper diagonal of the block LU factorization is used and exact computation/inversion of operators for
illustrative purposes. The result of 2 outer iterations follows from the result in Murphy, Golub, Wathen SISC 2000



Incomplete References for Scalable Block Preconditioning of MHD / Maxwell Systems

Physics-Based MHD and XMHD

* Knoll and Chacon et. al. “JFNK methods for accurate time integration of stiff-wave systems”, SISC 2005

* Chacon “Scalable parallel implicit solvers for 3D MHD", J. of Physics, Conf. Series, 2008

* Chacon “An optimal, parallel, fully implicit NK solver for three-dimensional visco-resistive MHD, PoP 2008

* L. Chacon and A. Stanier, “A scalable, fully implicit alg. for the reduced two-field low-p extended MHD model,” J. Comput. Phys., 2016.

Approximate Block Factorization & Schur-complements MHD

* Cyr, JS, Tuminaro, Pawlowski, Chacon. “A new approx. block factorization precond. for 2D .. reduced resistive MHD"”, SISC 2013

* Phillips, Elman, Cyr, JS, Pawlowski “A block precond. for an exact penalty formulation for stationary MHD”, SISC 2014

* Phillips, JS, Cyr, EIman, Pawlowski. "Block Prec. for Stable Mixed Nodal and Edge FE Incompressible Resistive MHD," SISC 2016.

* Cyr, JS, Tuminaro, “Teko an abstract block prec. capability with concrete example app. to Navier-Stokes and resistive MHD, SISC, 2016
* Wathen, Grief, Schotzau, Preconditioners for Mixed Finite Element Discretizations of Incompressible MHD Equations, SISC 2017

* Li, Ni, Zheng, A Charge-Conservative Finite Element Method for Inductionless MHD Equations. Part Il: A Robust Solver, SISC 2019;

Block Preconditioners for Maxwell
* Greif and Schotzau. "Precond. for the discretized time-harmonic Maxwell equations in mixed form," Numer. Lin. Alg. Appl. 2007.
* Wu, Huang, and Li. "Block triangular preconditioner for static Maxwell equations," J. Comput. Appl. Math. 2011
* Wu, Huang, Li. "Modified block precond. for discretized time- harmonic Maxwell .. in mixed form," J. Comp. Appl. Math. 2013.
* Adler, Petkov, and Zikatanov. "Numerical approximation of asymptotically disappearing solutions of Maxwell’s egns," SISC 2013.
* Phillips, JS, Cyr, “Scalable Precond. for Structure Preserving Discretizations of Maxwell Equations in First Order Form”, SISC 2018

Norm Equivalence Methods

* Mardal and Winther “Preconditioning discretizations of systems of partial differential equations”. NLAA, 2011

* Ma, Hu, Hu, Xu. "Robust preconditioners for incompressible MHD Models," JCP 2016.

* Hu, Ma, Xu. “Stable finite element methods preserving div B = 0 exactly for MHD models”, Numerische Mathematik 2017




Step back to CFD and incompressible flow for a moment to

Introduce block approximate factorization (physics-based) preconditioners



Multi-Physics and mixed discretizations:
Block Preconditioning

An alternative to fully-coupled AMG: Segregate system into physical fields (unknowns, dof)

0
—u+u-Vu—VV2u+Vp:f

V-u=0
Discretization and linearization leads to block linear system  pocgl:

1) C = 0 for Stable Mixed Q2/Q1 Taylor-Hood type

F BT Uu f discretizations of this saddle point problem
(Ladyzhenskaya—Babuska—Brezzi (LBB), inf-sup stable

B C p — O for Stokes)

2) Variational Multiscale (VMS) stabilized methods
Build preconditioners by manipulating block linear system (Hughes et. al.) introduce stabilizing weak form

operators for coercive formulations (C essentially a
scaled Laplacian type operator)



Brief Overview of Block Preconditioning Methods for Navier-Stokes:

Discrete N-S Exact LDU Factorization Approx. LDU
F BT I Ol[F o|l[fr F1BY|[ I Ol[F o[ F 'BT
B C|||BF' I1]]|0 S]||0 I BF/' 1[0 S]|0 I
S=C—-BF BT
Precond. Type ‘Fl_l Fu—l S. References
Pressure Proj.; -1 -1 A Chorin(1967);Temam
1% Term of F (I/At) O — AtBBT (1969); Perot (1993):
Neumann Series Quateroni et. al. (2000) as
solvers.
. _ R Patankar et. al. (1980) as
SIMPLEC F_l [dlag(z |F|) 1] C—-B [diag(z |F|)~1'] B”'| solvers; Pernice and
Tocci (2001) as smoother
Pressure Is(ay, Loghin, Wat(h%;’g
(04 tion/ — -1 ilvester, EIman -
D;;?J/seic;:‘on |:O:| F 1 _Fp Ap 2006); Elman, Howle,
Shadid, Shuttleworth,
(Commutator) Tuminaro (2003,2008)

(Taxonomy of Block Preconditioners, Eiman, Howle, JS, Shuttleworth, Tuminaro, JCP 2008)




E.g2. Incompressible Navier-Stokes

Stable Q2 - Velocity, and Q1 Pressure (Taylor Hood)

B

o gl

0

Lower diagonal of saddle point problem
has zero entry. — No block Jacobi or Guass-Siedel

With block preconditioning can use optimal AMG type methods on sub-problem:s.

Momentum transient convection-diffusion: ['Au = r,,

Pressure — Poisson type (e.g. PCD): Ap Ap — _Fprp

Kay, Loghin, Wathan, Silvester, EIman (1999 - 2006);
Benzi, Golub, Liesen, 2005
Elman, Howle, JS, Shuttleworth, Tuminaro (2003,2008)



Transient Kelvin-Helmholtz
Shear Layer Instability
Incompressible Navier-Stokes

VMS FE [T [7]
u P

Linear Iterations: Re=5000 with SUPG-PSPG Jime/Nonlinear step: Re=5000 with SUPG-PSPG
140} — AggC |4 — AggC
e—e DD e—e DD
120l =—a PCD ) 507 | m—m PCD
4—¢ SIMPLEC 4—¢ SIMPLEC
+; 100} @ 40
o -
) (V)]
= sof £
5 = 30/
~~
< 60 3]
- 1024 cores g 20} 1024 cores
= \
o \ 1ol LN \ |
N S —
P - ~ o ¢ ¢ -
0 4 ‘5 ‘6 ‘7 8 0 4 ‘5 ‘G ‘7 8
10 10 10 10 10 10 10 10 10 10
Number of unknowns Number of unknowns

Kelvin Helmholtz: Re=5000, Weak scaling at CFL, = OO ; CFL,=2.5
* Run on 1 to 1024 cores
* Pressure - PSPG, Velocity - SUPG(residual and Jacobian)



Now Return to MHD

Block approximate factorization (physics-based) preconditioners



ABF Precond. strongly couples Alfven wave operators and reduces to 3 - 2x2 blocks

'F, BT
B Cp

0

0 0

0]
0 0
Fg BY

B Gy,

&

0

0

0

0
A
!

0

0

—_—— O O

.0 0 0[F, BT 0 0]
0 I 0 0||B Cpl 0 0
0 0 Fg'o|l|0 0 |Fg BT
0 0 0 IJ[0 0 [B O

T

B

BT ZF;'B"]

Cp 0 0
VF'BY| Fy BT

0 B 0

* Order-of-magnitude of structural error terms indicates small perturbation of initial system,O(At) .

« Analysis of eigenstructure of related 3x3 system (u,p, [B,%]), and numerical studies, indicated
encouraging bound on eigenvalue spectrum. Results confirmed with numerical tests.

* Reduction to 3 - 2x2 block systems that can be approximated by Schur complement approaches
from CFD

* 2 -Saddle point type systems:

* Momentum-magnetics coupling

Bounds Alfven wave coupling with isotropic wave operator and speed Vi =

P=Fz—YF. 7

; Sp=Cy —Bﬁ‘ngT

B

Plo




3D Hydromagnetic Kelivn-Helholtz Instability
Approximate Block Preconditioning VMS FE
[Re =10%, Rem=10%, M, = 3; CFL, , = OO; CFL, ~0.125],

Iterations vs Unknown Solve Time vs Unknown Count
200 T - 2048 cores 20 - T T
x ML x ML
#=— DD ILU »— DD ILU
2 #—  Split-3x3 % Split-3x3
O 150} ¥ Split-4x4 15| *—* Split-4x4 2048 cores
IS
—
(O]
=
| -
©
8 100 10
£ (256 cores])
(0]
&
—
U 50} B 5+
>
) -\/_/
I //,//“//
O ——— : : : 0 4 ‘5 ‘6 ‘7 8
10* 10° 10° 107 108 10 10 10 10 10
Number of Unknowns Number of Unknowns

Fully coupled Algebraic
ML: Uncoupled AMG with repartitioning FC-AMG - ILU(0), V(3,3);
DD: Additive Schwarz Domain Decomposition 3x3, 4x4 use SIMPLEC approx. and V(3,3) with Gauss-Seidel smoothers




Now Consider Structure Preserving Discretizations
(e.g. DeRham Sequence [Nodal, Edge, Face, Vol.])

o —Y H(curl) LN H(div) SEAARNY §

O A

H=!' «—— H(curl)* «—— H(div)* «—— L?
-V V% -V

G=Qz'G K =Qp'K D=Q;'D
nodes; —— > edges — faces — nodesg

JQP B B o

nodes? e edges* o faces* % nodesy
175 Gt = atos Kt = Kt Q3 — Dt Q; 0
E

Block approximate factorization (physics-based) preconditioners used
to segregate disparate discretizations into sub-systems that can be
iteratively solved by optimal AMG methods in the correct spaces



Magnetic Vector-Potential MHD Formulation: structure-preserving ( B=V x A ;V-B =0)

Mixed basis*:

0
Rv:%-}-V-[pv@v—(T+TM)]+2pQ><v—pg:0 T:—(P+§u(v.u))1+u[Vu+vuT]
op Tm = %B@BfiHBHZI
R = — . :O 10 0
P 8t+v (pv)
0 1
Re:ﬂJrV-[pve+q]—T:VV—n||—V><B||2:0
ot Ho
0A 1
RA:O'E—{—VX—VXA—O‘VXVXA+UV¢:O; B=VxA
0
Ry=V-oV¢=0

v P A

Nodal H(grad) and
Edge H(curl)
Elements
[Intrepid]

* Divergence free involution for B enforced to machine precision by structure-preserving edge-elements

- Mixed basis, Q1/Q1 VMS FE Navier-Stokes, A-edge, Q1 Lagrange Multiplier

Follows from F — —%—‘f—V@; E=—-uxB+ nJ; J::—DVXB;BZVXA

¢




Magnetic Vector-Potential Form.: Hydromagnetic Kelvin-Helmholtz Problem (fixed CFL)

Mixed basis*:
Structure of Block Preconditioner: Critical 3x3 Block Sys.
Operator-Split into 2 — 2x2 Sys. with Sparse Schur Complement Approximations 5 > A
F B Z F F-1 0 0 F B* 0
B C 0 0 0 I 0 B.C 0
Acse = Pa =
GeTIY 0 ¢ B Y 0 0 I 0\0 I
00 0

Sa = G —YE-1Z (SIMPLEC, Alfven wave)

Segregation into
* H(grad) system AMG for velocity

8 A1t
* H(curl) AMG for magnetic vector potential (SIMPLEC M Sp =C-BF 'B (PCD)
« Scalar H(grad) AMG for pressure (PCD commutator)

Laplacian Gauge Laplacian Gauge

80 o
S0 A o Pa
@ — u S 35| —P
[ -— u
S 60 =
% 8 30/
5, HMKH -
@ Re = Re,,, = 10 Py
S E
© = 25
o §
=200 4k cores | =
© -—
] A 5
£10 — g 20 \
[e)
0‘ - Ll . I (@) I Ll T
10° 10° 10’ 10° 10° 10° 10° 10 10° 10°

Number of Unknowns Number of Unknowns



5 Moment Multi-fluid EM Plasma System Model

A
Density arps+v'(psus) = —pshe(Is+ Rs) + mgne (g1 Is—1 + N1 Rsy41) p Pa €] vESS ]\E
0t (psug) + V- (psus@ug+ pd+TT ) = gsng (E+ugxB) + ) g 050, (U — ug)
Momentum " t#s
—pPsUsne (Is+ Rs) + m - NePs—1UWs—115-1 + (neps+1us+l + ns+lpeue) Rsi1
s—1
Qs;rPsPr 2
a,jgs + V * [(gs + ps) us +ll3 'Hs +hs] = qsnsus 'E + Z - [As;[k:B (Tt - Ts) + mt (ut _us) ]
I#S ms + mt
Energy m om )
on
—Esne (Is+ Rs) + msjl Ne€s_115-1+ (NeEsi1 + Ns1Ee) Ry mulfi;IYJ\/izrplasma
formulations,
Charge . : _
_ _ solution algorithms:
and q= Z qsns J= ZCIsnsus
) S
Current See e.g.
1 q Abgral et. al.;
Maxwell’s C—ZatE—V xB+ =0 V-E= o Barth;
Equations 0 Kumar et. al,;
0:B+VxE=0 V-B=0 Laguna et. al.;

Rossmanith et. al.;
Shumlak et. al.;
B. Srinivasan et. al.;




Scalable Physics-based Preconditioners for Physics-compatible Discretizations

D, Ki, 0 Q 0 0] 0] 0
iU iU i Ug Pil; Pills
of D0 et g o g o
Dpﬁ Dpiul- Dg, pe petie QSL Qx 0
# 0 0 D, K&, 0| 0 | 0
Pelle Pelle 0 Dpeue D O Pelle Qpeue
pz‘ %-ui £ p;; geue Eg B
o Qe Qe Dy Dy, Del Qp | 0
O Pil; 0 0 Pele 0 Qg KB
0 0 0 0 0 0| K| Qs

lon/electron plasma

~16 Coupled

Nonlinear PDEs

Group the hydrodynamic variables together (similar H(grad) discretization)

F = (/0’67 Pily, g’ia Pe; Pele, 86)

Resulting 3x3 block system

Dr QL
Qr Qg
0 K7

Q] [
K

F
E
Qgz| [B

—)

Reordered 3x3

K7
Qr
QL

p] [ul [ €
0 B
El|E

Dr| |F




Physics-based/ABF Approach Enables Optimal AMG Sub-block Solvers

_QB Kg O ] _B_ 16 Coupled Nonlinear P?Es

P pul | € |JE |4 BpP

0 Dr Q| |E ¢
0 0 Sp]| |F

CFD type system
A N node-based coupled
—1
SF p— DF — ]Cng Qg ML: H(grad) AMG
(SIMPLEC: Schur-compl.)
e
L EA~—11v.B Electric field system

DE — QE - K B Q B K E Edge-based curl-curl type

2E 1 ML: H(grad) AMG with grad-div stab.

Compare to: 5z * JV XVxE=0 or H(curl) AMG (ML-refMaxwell, or Hyper-AMS)
0

~N_11-B Face-based simple

B — QB KE E mass matrix Inversion.

V-cycle Gauss-Seidel



Weak Scaling for 3D Free-space Electro Magnetic Pulse
with Block Maxwell Eq. Preconditioners on Trinity

Drekar Tpetra/Teko/MuelLu E-B Maxwell weak scaling

20.0
&
= CPU Time / Solve (not including AMG setup)
3
£
'I_= 15.0
g e —
<} .
2 GMRES Iterations /
5 10.0
= /
2 128K cores 8.4B row
e matrices (edge E field)
= 5.0
(G

0.0 T T )
32 256 2048 16384 131072
# MPI Processes
-®=GIM RES iterations/solve =#=Solve time/Newt

GS smoother with H(grad) AMG

E En—1y7B
Maxwell subsystem: electric field

Edge-based curl-curl type system
with grad-div stabilization for AMG.

Good scaling on block solves (at least for
solve; setup needs improvement)

Max CFLy, ~200, demonstrated to CFL_ > 10*
on many applications

Max CFL.~ 200



Demonstration of scalable physics-based preconditioners / solvers
for multifluid (ion-electron) EM plasmas: 3D Gaussian high pressure
initial condition for isentropic ion-acoustic wave propagation

Scaling of ion/electron multiflud plasma block
preconditioner for 3D Soliton: lon-Acoustic wave

25
20 Avg. Iterations per time-step
15
10 16K cores: Trinity ‘ ’ b
Avg. CPU time per time-step \ 2 o o ' | Eemeves
- ' - - S T . 3.4876-01
5 Pl \ o e ¢ - ‘ . 7256156701
32 cores » B .
0 , ; T 2 rd . “4.105e-07

Iso-surface of ion density colored

1.0E+05 1.0E+06 1.0E+07 1.0E+08 1.0E+09
by electric field magnitude

1) SimpleC for E,B contribution to fluid Schur-complement Isentropic flow B (ﬁ)7

2) System H(grad) AMG 1 V-cycle DD-ILU smoother for Euler sub-system. 0 Po

3) H(grad) AMG 1 V-cycle for Grad-div stabilized curl-curl system & DD-LU smoother _mi 95
4) H(grad) AMG 1 V-cycle for B field mass matrix & Gauss-Seidel smoother = Me o




Robustness and Accuracy: Asymptotic IMEX Solution of Full Multifluid EM Plasma
Model in MHD Limit (Visco-Resistive Alfven Wave)

Implicit L-stable and IMEX SSP/L-stable time integration and block preconditioners enable solution
of multifluid EM plasma model in the asymptotic resistive MHD limit.

, . . A
ln 3
. 5= Plasma Scales for S = 60 Lo feu) €] VB« B>
e 5= Electrons Nodal FE Hydro and Structure-preserving
10+ e S=100 discretization for EM
— g

-y

" Order Convergence \

Error pu.,

51075

10°7

) .
1 102 10? . .. ..
N, IMEX terms: implicit/explicit

Accuracy in MHD limit (IMEX) Overstepping fast time scales is both stable and accurate.
The inclusion of a resistive operator adds dissipation to the

electron dynamics on top of the L-stable time integrator.

S. T. Miller, E. C. Cyr, JS, R. M. J. Kramer, E. G. Phillips, S. Conde, R. P. Pawlowski, IMEX and exact sequence discretization of the multi-fluid plasma model. In press for JCP



2 Tokamak Related Preliminary Examples



Computational Goals of Tokamak Disruption Simulation (TDS) Center SciDAC-4 Partnership (DOE OFES/ASCR)

Develop and evaluate advanced hierarchy of plasma physics models and scalable solution methods to
understand disruption physics and explore mitigation strategies to avoid damage to the reactor.

U Attempt is to achieve temperature of ~100M deg K (6x Sun temp.),

U Energy confinement times O(1-10) min. are desired.

U Plasma instabilities/disruptions can cause break of confinement, huge plasma thermal energy loss, and
discharge very large electrical currents (*~20MA) into structure.

U ITER can sustain only a limited number of disruptions, O(1 — 5) significant instabilities.

-1.8e-03

-0.0016
0.0014
0.0012

0.001

Proof-of-principle " XS i /7 | 0.0008
I/ - | | 0.0006
0.0004

Vertical displacement 2> ,‘ IRy ¥ 00002
event (VDE) disruption : | . S
simulation in ITER

plasma and wall region.

U Magnitude

Time: 0.00000e+00

ity

—I_phi (plasma)
—— | —L_phi (wall)
T~ Tmax

o =
phi Magnitude

.
Co——o L
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TEMPERATURE

o
o
3
B«
o
0
1)
o3
J|

1200 1400



An Approximate Block Factorization of 3x3 Jacobin system leads to two 2x2 systems and allows more

efficient larger Alfven wave CFL simulations (e.g. plasma only region)

Fe Bs’ Yo Fe  Yo| [Fs™ Fg Bs’
BB LI‘ Cnst [ I Cnst BB LI‘
V4 Fot Z Fost I I
Num. Linear lts. Setup Solve Total
CFLY® | Timestep per non-Lin It Time Time Time
50 1764 25.48 25250.70 16628.80 41879.50
100 908 29.16 13283.60 9835.80 23119.40
200 490 34.27 7367.84 6293.74 13661.58
400 288 42.86 4594.03 4838.48 9432.51
600 222 49.33 3680.76  4435.00 8115.76
800 196 84.73 3310.57 6864.51 10175.08
1000 186 136.23 3169.22 10972.20 14141.42
1600 180 138.63 3190.51 11202.20 14392.71

m ILUT with threshold=0.1 for Spst
m Enforce max CFL, < 1
m Lundquist number S = 3 x 103



Disruption is a prompt termination of a plasma confinement Preliminary Models of Gas
in a tokamak and can be a showstopper for ITER. Mitigate to Injection for Disruption Mitigation
control thermal and current quench evolution.

Dynamics of Neutral Gas Jet
Injection at an angle wrt B Field
*  Hydrodynamics of jet
* Collisional effects
* lonization/recombination
* Efield interactions for
charged species
* Interactions with B field
for charged species

Gas Injection Assumed Distribution at
time t= 0 for Neutral Gas Core Inside

Separatrix

* Hydrodynamics of neutral core
expansion

* Collisional effects

i = 4 . * |onization/recombination

ITER Project: https://www.iter.org/ e e R S L A *  Efield interactions for

' charged species

DOE Advanced Scientific Computing Research (ASCR) / Office of Fusion Energy (OFES) * “‘1 2D,3D interactions _Wlth B
SciDAC Partnership: Tokamak Disruption Simulation (TDS) Project field for charged species



https://www.iter.org/

Preliminary 1D Gas Injection Simulations of Higher Z Neutral Gas (He, Ne, Ar ) Cores Expanding into

a 100ev Deuterium (D+,e-) Plasma

To attempt to control the loss of plasma internal energy (thermal quench) one idea is to inject

neutral impurities to enhance radiation loss.

To mitigate the effect of runaway electrons potentially impacting the wall (electrical current

quench), an idea is to inject neutrals to enhance dissipation of high-energy electrons.

Problem outline: Representative of the core plasma

Initial ~fully ionized Deuterium plasma at n = 102°, T = 100ev (~1M degrees K)
Neutral Argon (Ar°) core introduced atn=10%, T=10"ev (~1000 degrees K)
Parallel B — field is ignorable (due to geometry in 1D so B does not modify transport)

Domain in x is [0.3m,0.3m]; mesh is 4096 x 1 x 1 elements

t=1.2129

0.6

0.4
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E.g. 5 moment Ar or Ne plasma model x 10 species = 50 equations (solved in 3D but only a 1D solution)

Maxwell Equations E,B field

56 PDEs

6 equations (solved in 3D but only a 1D solution)
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Conclusions

* Robustness, efficiency / scalability of fully-implicit /IMEX parallel NK - AMG solvers is very good.

* Physics-based block decomposition and approximate Schur complement preconditioners must have
effective approximation of dominant off-diagonal coupling and time-scales in MHD/multifluid
plasmas represented. Can provide scalable solution of complex multiphysics plasma models.

* Iterative solvers and (nonlinear/linear ) convergence criteria for multiphysics systems is challenging!
* General mathematical libraries and components (e.g. Trilinos) are very valuable for enabling:

* Flexible development of implicit formulations of multiphysics systems (e.g. MHD, multifluid)

» Exploration of advanced physics/mathematical models and PDE spatial discretizations

* Dev. of complex physics-based / approximate Schur complement block preconditioners

* Adoption of well defined, and functionally separated, solution method kernels to promote
robustness and help in assessment when time-step failure, convergence problems occur.
* IMEX time-integration, Nonlinear solvers, Linear solvers, Scalable block and AMG
preconditioning



The End.



