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Resistive and extended MHD models 
are used to study important multiple-
time/ length-scale multiphysics plasma 
physics systems

§ Astrophysics and Planetary-physics: 
§ Magnetic reconnection, instabilities,
§ Solar flares, Coronal Mass Ejections.
§ Earth’s magnetospheric sub-storms,
§ Aurora, Planetary-dynamos.

§ Fusion & High Energy Density Physics: 
§ Magnetic Confinement [MCF] (e.g. ITER), 
§ Inertial Confinement [ICF] (e.g. Z-pinch, NIF).

Motivation: Science/Technology 

MHD VMS–LES MHD Turbulence Modeling Taylor-Green Vortex Decay. 
Illustration of non-universality of total MHD energy turbulent decay spectrum 
[with D. Sondak (Harvard), A. Oberai (USC)]
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General Mathematical / Computational Science Motivation:

Achieving Roust Scalable Simulations of Strongly Coupled Nonlinear Multiple-
time-scale Multiphysics Systems to Enable

§ Predictive, Accurate, and Efficient Longer Time-scale Computational Simulations

§ Beyond Forward Simulation: Design/Optimization/UQ

§ Physics / Mathematical Model Validation, Experimental Data Interpretation & Inference 



What are multi-physics systems? (A multiple-time-scale perspective)
These systems are characterized by a myriad of complex, interacting, nonlinear multiple time-
and length-scale physical mechanisms.

These mechanisms:

• can be dominated by one, or a few processes, that drive a short dynamical time-scale 
consistent with these dominating modes,

• consist of a set of widely separated time-scales that produce a stiff system response,

• nearly balance to evolve system on dynamical time-scales that are long relative to component time scales, 

• or balance to produce steady-state behavior. 

E.g. Fusion Reactors (Tokamak -ITER; Pulsed - NIF & Z-pinch); Fission Reactors 
(GNEP);  Astrophysics; Combustion; Chemical Processing; Fuel Cells; etc.

Explicit methods

Some implicit aspect required



Our Mathematical Approach - develop: 
§ Stable, higher-order accurate implicit/IMEX formulations for multiple-time-scale systems

§ Stable and accurate unstructured FE spatial discretizations. Options enforcing key 
mathematical  properties (e.g. structure preserving forms: div B = 0; positivity     , P; DMP)

§ Robust, efficient fully-coupled nonlinear/linear iterative solution based on Newton-Krylov
methods

§ Scalable and efficient multiphysics preconditioners utilizing physics-based and approximate 
block factorization/Schur complement preconditioners with multi-level (AMG) sub-block solvers 

=> Also enables beyond forward simulation: Design/Optimization/UQ ( e.g. Adjoints - error    
estimates, sensitivities; surrogate modeling (E.g. GP), …)
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Goal for Fusion Device: 
• Attempt is to achieve temperature of ~100M deg K (6x Sun temp.) , 
• Energy confinement times O(1 - 10) min. are desired.
• Understanding and controlling instabilities/disruptions in plasma 

confinement is critical

Strong external magnetic fields used for:
• Resistive heating of the plasma (along with RF-EM waves, ..)

• Confinement of the hot plasma to keep it from striking the wall

• Plasma disruptions can cause break of confinement, huge plasma 
thermal energy loss, and discharge of very large  electrical currents 
(~20MA) to surface and damage the device. 

• ITER can sustain only a limited number of significant disruptions, 
O(1 – 5). International Thermonuclear 

Experimental Reactor
[under construction, 
Cadarache facility France]

E.g. Multiple-time-scale Multiphysics System: Magnetic Confinement Fusion

(ITER)



ITER

DOE Office of Science ASCR/OFES Reports: Fusion Simulation Project Workshop Report, 2007, 
Integrated System Modeling Workshop 2015

E.g. Multiple-time-scale Multiphysics System: 
Magnetic Confinement Fusion (MCF)

MCF Devices (e.g. ITER) are characterized by large-range of time and length-scales 



Braginskii, Rev. Plasma Phys. 1965; E. T. Meier and U. Shumlak PoP, 2012; 

5 Moment Full Maxwell EM Multifluid Plasma Model:  
Multiple Atomic Species [e.g. structure preserving formulation] 

Conservation / Balance Eqn.
Mass[0]

Momentum[1]

Total
Energy[2]

Charge /
Current

Maxwell’s
Eqn.

⇢u⇢ E E B

Nodal FE Hydro and Structure-preserving 
discretization for EM

Important involutions that  the
continuous system satisfies. 
Structure-preserving methods 
enforce these in an appropriate 
discrete sense. 



A Reduced length-scale/time scale representation; Basic single fluid
Resistive MHD [e.g. 3D H(grad) Variational Multiscale (VMS) Stabilized FE] 

• Divergence free involution enforced as constraint with a Lagrange multiplier (Elliptic, parabolic, hyperbolic)
[Dedner et. al. 2002; Elliptic: Codina et. al. 2006, 2011, JS et. al. 2010,  2016]

• Only weakly divergence free in FE implementation (stabilization of B - coupling )

• Relationship with projection (Brackbill and Barnes 1980), and elliptic divergence cleaning (Dedner et. al, 2002), (JS et al. 2016).

• Issue with C0 FE for domains with re-entrant corners / soln singularities 
[Costabel et. al. 2000, 2002, Codina, 2011, Badia et. al. 2014]
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Table 1: One-Fluid Divergence Form of MHD Equations
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@t
+

1

cp
 +r ·B = 0

Resistive MHD Model in Conservative FormIllustration how 
Resistive MHD 
differs from CFD:

• Magnetic 
Stress

• Work due to 
Magnetic 
stress

• Magnetic 
Induction 
Evolution Eq. 
and GLM 
Solenoidal 
Constraint Eq.

@⌃tot

@t
+r · [(⇢e+ 1

2
kvk2)v � (T+TM) · v + h] = 0

We use elliptic 
cleaning and VMS 

stabilization for 
smooth problems 



Why Newton-Krylov Methods?
Newton-Krylov

Direct-to-steady-state Fully-implicit / IMEX transient

Convergence properties

• Strongly coupled multi-physics 
often requires a strongly coupled 
nonlinear solver

• Quadratic convergence near 
solutions (backtracking, adaptive 
convergence criteria)

• Often only require a few iterations 
to converge, if close to solution, 
independent of problem size

Inexact Newton-Krylov

Jacobian Free N-K Variant

See e.g. Knoll & Keyes, JCP 2004



Why Newton-Krylov Methods?
Newton-Krylov

Direct-to-steady-state
Globalized Newton w/AD Fully-implicit / IMEX transient

Convergence
Properties

Characterization 
Complex Soln. Spaces

Optimization Integrated UQ tools
(e.g. Adjoints for
error estimation, 
local sensitivities,
efficient surrogate 
modeling) 

Bifurcation/ Stability
Analysis



Why Implicit / IMEX Newton-Krylov Methods?
Newton-Krylov

Direct-to-steady-state Fully-implicit transient / IMEX

Stability, Accuracy and Efficiency

• Stable (stiff systems)

• High order methods (e.g. BDF, DIRK, IMEX, etc.)

• Variable order techniques

• Local and global error control possible

• Can be stable, accurate, and efficient when run at the dynamical 
time-scale of interest in appropriate multiple-time-scale systems   
(e.g. Knoll et. al., Brown and Woodward., Chacon and Knoll, S., Ober, JS. and Ropp)
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Newton-Krylov

Direct-to-steady-state

Accuracy Efficiency

Fully-implicit / IMEX transient

Stability

Why Implicit / IMEX Newton-Krylov Methods?



Resistive MHD: Soloveev Analytic Equilibrium 
Nonlinear Disturbance Saturation (VMS Q1).

kuk, kuk± cs, kuk± ca, kuk± cf ,±ch

Approx. Computational Time Scales:
• B Divergence Const. (             ): 1/      = 0
• Fast Magnetosonic Wave (cf):     10-4 to 10-7

• Alfven Wave (ca):                         10-4 to 10-7

• Slow Magnetosonic Wave (cs):    10-2 to 10-3?

• Sound Wave (c):  10-1 to 10-3  

• Advection (cv max):                            ~ 10-2

• Diffusion:          10-3 to 10-2

•Macroscopic Dynamic Time-scale:
unstable mode:    O(1) 

1

Fully-implicit (BDF2, SDIRK22)
Max CFL:        

CFLdiv = 
CFLcf ~ 104

CFLcA ~ 104

CFLcs ~ 1
CFLc ~ 1
CFLcv ~ 0.1

1

Kink and interchange instability. 

MHD Wave speeds

r ·B = 0

Here ch is for elliptic divergence cleaning1



Instability growth rate 

[Comparisons with L. Chacon and PIXIE 3D code (LANL)]

P

P0
= (

⇢

⇢0
)�

� = 1

↵ = 1.94 Drekar

↵ = 2.0 Chacon

� = 5/3

↵ = 1.69 Drekar

↵ = 1.7 Chacon

Coarse Mesh

Medium Mesh

Coarse Mesh.    ( 96K elem.)

Medium Mesh (230K elem.)

Fine Mesh        (900K elem.)

Isentropic EoS



Generalized Ohm's law without electron inertia

Multifluid growth rate vs mesh resolution

[1]Ronald C Davidson. Physics of Nonneutral Plasmas. World Scienti c Publishing, 2001.
[2] W. Knauer. Diocotron instability in plasmas and gas discharges. Journal of Applied Physics, 37(2):602{611, 1966.
[3] J. Petri. Relativistic stabilisation of the diocotron instability in a pulsar and cylindrical electrosphere. Astronomy &
Astrophysics, 469(3):843{855, 2007.

Multifluid Simulation of a Diocotron Instability of an Electron Beam
In a Uniform Axial Magnetic Field

Comparison with Linear Stability Theory [1,2,3] 

Diocotron instabilities are driven by velocity 
shear created by ExB drift velocities in non-
neutral electron columns. A sufficiently 
strong shear in this rotational velocity drives 
the development of the cylindrical diocotron 
instability.



Illustration of Time-scales and an IMEX Partition for Multi-fluid Plasma System Model 

Other work on 
multifluid plasma 
formulations, 
solution algorithms: 

See e.g. 
Abgral et. al.; 
Barth;
Kumar et. al.; 
Laguna et. al.; 
Rossmanith et. al.; 
Shumlak et. al.;
B. Srinivasan et. al.;  

Light wave off 
diagonal coupling 

Strong off diagonal 
coupling for 
plasma oscillation  

Cyclotron frequency  

Collisional  

Ionization/recombination  

Explicit Hydrodynamics
(slow)

Implicit EM, EM sources, sources 
for species  interactions (fast)

MU̇ + F +G = 0IMEX RK: 
Time Integration

S. T. Miller, E. C. Cyr, JS, R. M. J. Kramer, E. G. Phillips, S. Conde, R. P. Pawlowski, IMEX and exact sequence discretization of the multi-fluid plasma model. JCP, 2019



Multifluid Model: Implicitness and IMEX  used to handle Multiple-time-scales

�tdyn
Fully
EXPLICIT

�tdyn
Fully
IMPLICIT

�tdyn

EXPLICITIMPLICIT

Of course stability does not imply accuracy.

⌧EM ⌧!pe ⌧!pi ⌧!ci⌧!ce ⌧ue ⌧ui⌧ci⌧ce 
Illustration for a particular example (e.g. high resolution mesh ( small           ) and lower density plasmas)�x

  



Newton-Krylov

Direct-to-steady-state

Accuracy Efficiency

Fully-implicit / IMEX transient

Stability

Why Implicit / IMEX Newton-Krylov Methods?



Demonstration / Verification of Implicit Solution for Longitudinal Electron 
Plasma (LEP) Oscillation with a Highly Under-resolved TEM Wave (SDIRK22) 

�t = 0.1 ⇤ ⌧!pe ⇡ 104 ⇤ ⌧EM (on 3200 fine mesh)

LEP

LEP: Longitudinal Electron Plasma Wave
RCP: Right Hand  Circularly Polarized Wave
LCP: Left Hand     Circularly Polarized Wave
(Cold plasma)

Verification effort with Niederhaus, Radtke, 
Bettencourt, Cartwright, Kramer, Robinson and
ATDM EMPIRE Team

⇢u⇢ E E B

Nodal FE Hydro and Structure-preserving 
discretization for EM

TEM Wave LEP Oscillation 



Demonstration of Accuracy for Implicit Solution Methods for Langmuir wave (i.e. Longitudinal Electron  
Plasma [LEP] Oscillation): Fast time-scale unresolved transverse EM (light) waves (Ne = 1015)

Note: Explicit solver is not highly optimized. Explicit is 20x – 30x faster per time step.

Implicit in this case 
~1000x larger         with same error�t

Explicit

Implicit in this case 
~50x faster with same error

Explicit



Why Implicit / IMEX Newton-Krylov Methods?
Newton-Krylov

Direct-to-steady-state

Stability Accuracy Efficiency

What I am not implying: Fully-implicit / IMEX is the only way to get these properties

What I am implying: Fully-implicit / IMEX  are excellent ways to get these properties along 
with a number of other benefits when applied to multiple-time-scale multiphysics systems

Fully-implicit transient / IMEX



Why Implicit/IMEX Newton-Krylov Methods?
Newton-Krylov

Direct-to-steady-state Fully-implicit transient / IMEX

Convergence
Properties

Characterization 
Complex Soln. Spaces

Optimization, 
U Q Stability Accuracy Efficiency

Very Large Problems -> Parallel Iterative Solution of Sub-problems

Krylov Methods (e.g. GMRES) - Robust, Scalable and Efficient Parallel Preconditioners
• Approximate Block Factorizations
• Physics-based Preconditioners
• Multi-level solvers for systems and scalar equations



Scalable Preconditioning for Systems

2. Approximate Block Factorization / Physics-based (Teko; Cyr, JS, Tuminaro, Phillips)   

• Applies to mixed interpolation (FE), staggered (FV), and structure preserving
discretization approaches using segregated unknown blocking

• Applies to systems where coupled AMG is difficult or might fail (e.g saddle pt. systems, coupled hyperbolic eqns.)
• Enables specialized optimal AMG, e.g. H(grad), H(curl) for disparate discretization spaces. 
• Can provide optimal algorithmic scalability for coupled systems

1. Fully-coupled Algebraic Multilevel (AMG) Methods: (ML & Muelu; Tuminaro, Hu et. al.))
• Consistent set of DOF-ordered blocks at each node (e.g. CG VMS/Stabilized FE)

• Uses non-zero block graph structure of Jacobian 
• Additive Schwarz DD ILU(k) as smoothers (Jacobi & GS possible for transients)
• Can provide optimal algorithmic scalability

3. Monolithic Multigrid Enabled by Schur-complement Structure Aware Smoothers 
(Vanka et. al, Farrell et. al, MacLachlan et. al., ….) 

u P B T 

⇢u⇢ E E B



A Few Examples of Scalability of Full System Projection AMG 
for 3D Variational Multiscale Stabilized Resistive MHD

Important for 
u P B T 

• scalable solver for uniform / consistent (DOF) of discretizations

• Sub-block system solvers for approximate block factorizations / physics 
based approaches 



3D H(grad) Variational Multiscale (VMS) / AFC formulation 

• Divergence free involution enforced as constraint with a Lagrange multiplier (Elliptic, parabolic, hyperbolic)
[Dedner et. al. 2002; Elliptic: Codina et. al. 2006, 2011, JS et. al. 2010,  2016]

• Only weakly divergence free in FE implementation (stabilization of B - coupling )

• Can show relationship with projection (e.g. Brackbill and Barnes 1980), and elliptic divergence cleaning (Dedner et. al, 2002) [JS et. al. 2016].

• Issue for using C0 FE for domains with re-entrant corners / soln singularities [Costabel et. al. 2000, 2002, Codina, 2011, Badia et. al. 2014]
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Resistive MHD Model in Residual Notation
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All nodal H(grad) 
elements using 
VMS stabilized 
weak form for the 
(U,P) and (B,   ) 
saddle point 
problems.

@⌃tot
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2
kvk2)v � (T+TM) · v + h] = 0

 



~20x

Titan: 128K
BG/Q 256K

BG/Q: 1M

4096x increase in prb. size

Large-scale Weak Scaling Studies for Cray XK7 AND BG/Q; VMS 3D FE MHD
(similar discretizations for all variables, fully-coupled H(grad) AMG)                         

Largest fully-coupled NK-AMG unstructured FE MHD solves demonstrated to date:
MHD (steady) weak scaling studies to 256K Cray XK7, 1M BG/Q
Largest demonstration computation MHD (steady):          13B  DoF, 1.625B elem, on 128K cores
Poisson sub-block solvers: 4.1B DoF, 4.1B elem, on 1.6M cores BG/Q

u P B r

4096x increase in prb. size

BG/Q: 1M

Lin, JS, Hu, Pawlowski, Cyr, Performance of Fully-coupled Algebraic Multigrid Preconditioners for 
Large-scale VMS Resistive MHD,  J. Comp. and Applied Math, 344 (2018) 782–793



Weak Scaling for VMS 3D Island Coalescence 
Problem: Driven Magnetic Reconnection
[S = 103, dt = 0.1]

BDF2 NK FC-AMG ILU(fill=0,ov=1), V(3,3)

Lundquist No. S Newt. Steps / dt Gmres Steps / dt
1.0E+03 1.36 5.2
5.0E+03 1.43 5.7
1.0E+04 1.51 6
5.0E+04 2 9.8
1.0E+05 2 12
5.0E+05 2 8.4
1.0E+06 2 8.4

Scaling with Lundquist No. (Re as well).

Mesh: 128x128x128, dt = 0.0333.

256x256x256

(Scaling of total time with I/O included)

32K  unknowns per core

S = 104

(similar discretizations for all variables, 
fully-coupled H(grad) AMG)                         

u P B r

JS, Pawlowski, Cyr, Tuminaro, Chacon, Weber, Scalable Implicit Incompressible Resistive 
MHD with Stabilized FE and Fully-coupled Newton-Krylov-AMG, CMAME 304, 1–25, 2016



Approximate Block Factorization / Physics-based Preconditioning

• Applies to mixed interpolation (FE), staggered (FV), physics compatible  
discretization approaches using segregated unknown blocking

• Applies to systems where coupled AMG is difficult or might fail 
(e.g. Hyperbolic systems with strong off diagonal physics coupling)

• Enables specialized optimal AMG, e.g. H(grad), H(curl) for disparate discretizations.



Illustration of Time-scales and an IMEX Partition for Multi-fluid Plasma System Model 

Other work on 
multifluid plasma 
formulations, 
solution algorithms: 

See e.g. 
Abgral et. al.; 
Barth;
Kumar et. al.; 
Laguna et. al.; 
Rossmanith et. al.; 
Shumlak et. al.;
B. Srinivasan et. al.;  

Light wave off 
diagonal coupling 

Strong off diagonal 
coupling for 
plasma oscillation  

Cyclotron frequency

Collisional

Ionization/recombination [diagonal (s)/off diagonal (s,t)]

Explicit 
Hydrodynamics

Implicit EM, EM sources, sources for 
species                     interactions

MU̇ + F +G = 0IMEX: Time   
Integration

⇢u⇢ E E B



Illustrate Physics-based and Approximate Block Factorizations with Simple Example 
Strongly Coupled Off-diagonal Physics & Disparate Discretizations (e.g. structure-preserving)

The Schur complement is then

Fully-discrete:
Approximate Block Factorizations & Schur-complements: 


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Fully-continuous Wave System Analysis:
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Discrete Sys.: E.g. 2nd order FD (illustration)

[w/ L. Chacon (LANL) ]

Recall: This is motivating how we develop preconditioners, not for developing solvers.
The NK method still seeks the solution to the original nonlinear/linear system residual!



Result: 
1) Stiff (large-magnitude) off-diagonal hyperbolic type operators (blocks) are now combined onto 
diagonal Schur-complement operator (block) of preconditioned system. 

2) Partitioning  of coupled physics into sub-systems enables exisiting SCALABLE AMG optimized for the 
correct structure preserving spaces e.g. H(grad), H(curl), H(div) to be used. 
(e.g. Teko block-preconditioning using Trilinos ML/Muelu; FieldSplit in PetSc with Hyper)

Still Requires:
3) Effective sparse Schur complement approximations to preserve strong cross-coupling of physics and 
critical stiff unresolved time-scales, and be designed for efficient solution by iterative methods.
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[w/ L. Chacon (LANL) ]

Physics-based and Approximate Block Factorizations: 
Strongly Coupled Off- Diagonal Physics & Disparate Discretizations (e.g. structure-preserving)



Extending the Simple Example
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
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v

�
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0
0

�

A coupled convection diffusion problem with periodic BCs 
and u=sin(2πx), v=cos(2πx)

Three time-scales of interest
• τd=h2/d   – Diffusive time scale
• τa=h/a     – Advection time scale (we assume a=1)
• τc=h/c     – Coupled wave time scale

CFLd = d�t
h2 , CFLa = a�t

h , CFLc =
c�t
h

CFL < 1 roughly the 
explicit stability limit varies with
temporal / spatial discretization



Block Preconditioning and Time-Scales (e.g. FD discretization coupled 
convection/diffusion/first-order wave coupled system) 
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*Only the upper diagonal of the block LU factorization is used in the Schur-complement
as in Murphy, Golub, Wathen SISC 2000 -> 2 iterations in GMRES for exact inversion of sub-block solver and Schur complement.
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Block Preconditioning and Time-Scales (e.g. FD discretization Implicit coupled 
convection/diffusion/first-order wave coupled system) 

CFLc 10�2 10�1 100 101 102

GS 2 3 67 231 414
J 3 5 125 465 500
SC 2 2 2 2 2

CFLc 10�2 10�1 100 101 102

GS 2 3 5 13 30
J 3 4 9 26 78
SC 2 2 2 2 2

CFLa = 1, CFLd = 1 CFLa = 1, CFLd = 102

*Only the upper diagonal of the block LU factorization is used and exact computation/inversion of operators for 
illustrative purposes. The result of 2 outer iterations follows from the result in Murphy, Golub, Wathen SISC 2000 

AVG. outer iterations in the dof based block factorization linear solver 

Schur complement is important when 
unresolved coupling time-scale is fast

Jacobi and GS are effective when coupling is “less important”; Block diagonal 
dominance, M-matrices, one directional coupling, etc. (see e.g. Axelsson, Neytcheva, 
NLAA (2013), Elsner, Mehrmann Num. Math (91), Y. Saad, Iterative Meth. Book 2003) 

* *



Physics-Based MHD and XMHD
• Knoll and Chacon et. al. “JFNK methods for accurate time integration of stiff-wave systems”, SISC 2005
• Chacon “Scalable parallel implicit solvers for 3D MHD”, J. of Physics, Conf. Series, 2008
• Chacon “An optimal, parallel, fully implicit NK solver for three-dimensional visco-resistive MHD, PoP 2008
• L. Chacon and A. Stanier, “A scalable, fully implicit alg. for the reduced two-field low-β extended MHD model,” J. Comput. Phys., 2016. 

Approximate Block Factorization & Schur-complements MHD
• Cyr, JS, Tuminaro, Pawlowski, Chacon. “A new approx. block factorization precond. for 2D .. reduced resistive MHD”, SISC 2013
• Phillips, Elman, Cyr, JS, Pawlowski “A block precond. for an exact penalty formulation for stationary MHD”, SISC 2014
• Phillips, JS, Cyr, Elman, Pawlowski. "Block Prec. for Stable Mixed Nodal and Edge FE Incompressible Resistive MHD," SISC 2016.
• Cyr, JS, Tuminaro, “Teko an abstract block prec. capability with concrete example app. to Navier-Stokes and resistive MHD, SISC, 2016
• Wathen, Grief, Schotzau, Preconditioners for Mixed Finite Element Discretizations of Incompressible MHD Equations, SISC 2017
• Li, Ni, Zheng, A Charge-Conservative Finite Element Method for Inductionless MHD Equations. Part II: A Robust Solver, SISC 2019;

Block Preconditioners for Maxwell
• Greif and Schotzau. "Precond. for the discretized time-harmonic Maxwell equations in mixed form," Numer. Lin. Alg. Appl. 2007.
• Wu, Huang, and Li. "Block triangular preconditioner for static Maxwell equations," J. Comput. Appl. Math. 2011
• Wu, Huang, Li. "Modified block precond. for discretized time- harmonic Maxwell .. in mixed form," J. Comp. Appl. Math. 2013.
• Adler, Petkov, and Zikatanov. "Numerical approximation of asymptotically disappearing solutions of Maxwell’s eqns," SISC 2013.
• Phillips, JS, Cyr, “Scalable Precond. for Structure Preserving Discretizations of Maxwell Equations in First Order Form”, SISC 2018

Norm Equivalence Methods
• Mardal and Winther “Preconditioning discretizations of systems of partial differential equations”. NLAA, 2011
• Ma, Hu, Hu, Xu. "Robust preconditioners for incompressible MHD Models," JCP 2016.
• Hu, Ma, Xu. “Stable finite element methods preserving div B = 0 exactly for MHD models”, Numerische Mathematik 2017

Incomplete References for Scalable Block Preconditioning of MHD / Maxwell Systems



Step back to CFD and incompressible flow for a moment to 

Introduce block approximate factorization (physics-based) preconditioners



Multi-Physics and mixed discretizations: 
Block Preconditioning

An alternative to fully-coupled AMG: Segregate system into physical fields (unknowns, dof)

Discretization and linearization leads to block linear system

Build preconditioners by manipulating block linear system 

Recall: 
1) C = 0 for Stable Mixed Q2/Q1  Taylor-Hood type 
discretizations of this saddle point problem 
(Ladyzhenskaya–Babuška–Brezzi (LBB), inf-sup stable 
for Stokes) 

2) Variational Multiscale (VMS) stabilized methods 
(Hughes et. al.) introduce stabilizing weak form 
operators for coercive formulations (C essentially a 
scaled Laplacian type operator)



Discrete N-S Exact LDU Factorization Approx. LDU

Brief Overview of Block Preconditioning Methods for  Navier-Stokes: 

Precond. Type References

Pressure Proj.;  
1st Term of 
Neumann Series 

Chorin(1967);Temam
(1969); Perot (1993): 
Quateroni et. al. (2000) as 
solvers.

SIMPLEC
Patankar et. al. (1980) as 
solvers; Pernice and 
Tocci (2001) as smoother

Pressure 
Convection / 
Diffusion
(Commutator)

Kay, Loghin, Wathan, 
Silvester, Elman (1999 -
2006); Elman, Howle, 
Shadid, Shuttleworth, 
Tuminaro (2003,2008)

(Taxonomy of Block Preconditioners, Elman, Howle, JS, Shuttleworth, Tuminaro, JCP 2008) 
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With block preconditioning can use optimal AMG type methods on sub-problems. 
Momentum transient convection-diffusion: 

Pressure – Poisson type (e.g. PCD):

E.g. Incompressible Navier-Stokes
Stable Q2 - Velocity, and Q1 Pressure (Taylor Hood)

Lower diagonal of saddle point problem
has zero entry. – No block Jacobi or Guass-Siedel

Ap�p = �Fprp

F�u = ru

Kay, Loghin, Wathan, Silvester, Elman (1999 - 2006);
Benzi, Golub, Liesen, 2005 
Elman, Howle, JS, Shuttleworth, Tuminaro (2003,2008)


F BT

B̂ 0

�



1 core
1024 cores

1 core
1024 cores

Transient Kelvin-Helmholtz
Shear Layer Instability
Incompressible Navier-Stokes 
VMS FE

u P 

1



Now Return to MHD

Block approximate factorization (physics-based) preconditioners



• Order-of-magnitude of structural error terms indicates small perturbation of initial system,              .

• Analysis of eigenstructure of related 3x3 system (u,p, [B,   ]), and numerical studies, indicated 
encouraging bound on eigenvalue spectrum. Results confirmed with numerical tests. 

• Reduction to 3 - 2x2 block systems that can be approximated by Schur complement approaches 
from CFD

• 2 - Saddle point type systems:

• Momentum-magnetics coupling                                            
Bounds Alfven wave coupling with isotropic wave operator and speed                    .    

P = FB � Y F̂�1
m Z

O(�t)

 

ABF Precond. strongly couples Alfven wave operators and reduces to 3 - 2x2 blocks 

VA =
B

p
⇢µ0



DD ILU

3D Hydromagnetic Kelivn-Helholtz Instability 
Approximate Block Preconditioning VMS FE
[Re =104, Rem=104, MA = 3; CFLp, =       ; CFLu ~0.125], 

Fully coupled Algebraic
ML: Uncoupled AMG with repartitioning
DD: Additive Schwarz Domain Decomposition

FC-AMG – ILU(0), V(3,3); 
3x3, 4x4 use SIMPLEC approx. and V(3,3) with Gauss-Seidel smoothers

u P B T 
DD ILU

1



Now Consider Structure Preserving Discretizations 
(e.g. DeRham Sequence [Nodal, Edge, Face, Vol.])

Block approximate factorization (physics-based) preconditioners used 
to segregate disparate discretizations into sub-systems that can be 
iteratively solved by optimal AMG methods in the correct spaces  



Magnetic Vector-Potential MHD Formulation: structure-preserving (                                         )

Re =
⇤(⇥e)

⇤t
+⌅ · [⇥ve + q]�T : ⌅v � �⇤ 1

µ0
⌅⇥B⇤2 = 0

Rv =
@⇢v

@t
+r · [⇢v ⌦ v � (T+TM )] + 2⇢⌦⇥ v � ⇢g = 0

RP =
@⇢

@t
+r · (⇢v) = 0

TM =
1
µ0

B⇥B� 1
2µ0

⇤B⇤2I

R� = r · �r� = 0

• Divergence free involution for B enforced to machine precision by structure-preserving edge-elements

• Mixed basis, Q1/Q1 VMS FE Navier-Stokes, A-edge, Q1 Lagrange Multiplier 

v P A 

Mixed basis*:

�

RA = �
@A

@t
+r⇥ 1

µ
r⇥A� �v ⇥r⇥A+ �r� = 0; B = r⇥A

Nodal H(grad) and 
Edge H(curl) 
Elements 
[Intrepid]

B = r⇥A ;r ·B = 0

Follows from                                       ;                                        ;                            ;   B = r⇥A ;r ·B = 0



Segregation into 
• H(grad) system AMG for velocity 
• H(curl) AMG for magnetic vector potential (SIMPLEC approx.) 
• Scalar H(grad) AMG for pressure (PCD commutator)

Magnetic Vector-Potential  Form.: Hydromagnetic Kelvin-Helmholtz Problem (fixed CFL)
Structure of Block Preconditioner: Critical 3x3 Block Sys. 
Operator-Split into 2 – 2x2 Sys. with Sparse Schur Complement Approximations u P A 

Mixed basis*:

�

4k cores

HMKH 
Re = Rem = 103

(SIMPLEC, Alfven wave)
(PCD) 



5 Moment Multi-fluid EM Plasma System Model 

⇢u⇢ E E B

Other work on 
multifluid plasma 
formulations, 
solution algorithms: 

See e.g. 
Abgral et. al.; 
Barth;
Kumar et. al.; 
Laguna et. al.; 
Rossmanith et. al.; 
Shumlak et. al.;
B. Srinivasan et. al.;  



Scalable Physics-based Preconditioners for Physics-compatible Discretizations

Group the hydrodynamic variables together (similar H(grad) discretization)

Resulting 3x3 block system 2

4
QB KB

E 0
KE

B QE QE
F

QF
B QF

E DF

3

5

2

4
B
E
F

3

5

Reordered 3x3

Ion/electron plasma
~16 Coupled 

Nonlinear PDEs

⇢u⇢ E E B



Physics-based/ABF Approach Enables Optimal AMG Sub-block Solvers 

Electric field system
Edge-based curl-curl type
ML: H(grad) AMG with grad-div stab.
or  H(curl) AMG (ML-refMaxwell, or Hyper-AMS)

CFD type system
node-based coupled
ML: H(grad) AMG
(SIMPLEC: Schur-compl.) 

Face-based simple 
mass matrix Inversion.
V-cycle Gauss-Seidel 

@2E

@t2
� 1

�µ0
r⇥r⇥E = 0Compare to:

ˆ

Ê

⇡

+

16 Coupled Nonlinear PDEs

⇢u⇢ E E B

+



Weak Scaling for 3D Free-space Electro Magnetic Pulse 
with Block Maxwell Eq. Preconditioners on Trinity

Max CFLc ~ 200GS smoother with H(grad) AMG 

128K cores 8.4B row 
matrices (edge E field) 

GMRES Iterations

CPU Time / Solve (not including AMG setup)

Good scaling on block solves (at least for 
solve; setup needs improvement)

Max CFLEM ~200, demonstrated to CFLc > 104

on many applications 

Maxwell subsystem: electric field 
Edge-based curl-curl type system 
with grad-div stabilization for AMG. 



16K cores: Trinity

Iso-surface of ion density colored 
by electric field magnitude

P

P0
= (

⇢

⇢0
)�Isentropic flow

µ =
mi

me
= 25

⇢u⇢ E E B

Structure-preserving discretization

1) SimpleC for E,B contribution to fluid Schur-complement
2) System H(grad) AMG 1 V-cycle DD-ILU smoother for Euler sub-system.
3) H(grad) AMG 1 V-cycle for Grad-div stabilized curl-curl system & DD-LU smoother
4) H(grad) AMG 1 V-cycle for B field mass matrix & Gauss-Seidel smoother 

32 cores

B

Demonstration of scalable physics-based preconditioners / solvers 
for multifluid (ion-electron) EM plasmas: 3D Gaussian high pressure 
initial condition for isentropic ion-acoustic wave propagation



IMEX terms: implicit/explicit

!p�t

!c�t
⌫↵��t

⌫S�t/�x

c�t/�x

u�t/�x

µ�t/⇢�x2

Robustness and Accuracy: Asymptotic IMEX Solution of Full Multifluid EM Plasma 
Model in MHD Limit (Visco-Resistive Alfven Wave) 

Implicit L-stable and IMEX SSP/L-stable  time integration and block preconditioners enable solution 
of multifluid EM plasma model in the asymptotic resistive MHD limit. 

Accuracy in MHD limit (IMEX) Overstepping fast time scales is both stable and accurate. 
The inclusion of a resistive operator adds dissipation to the 
electron dynamics on top of the L-stable time integrator.

⇢u⇢ E E B

Nodal FE Hydro and Structure-preserving 
discretization for EM

Implicitly overstepping stiff modes, 
not controlling accuracy, can make 
an intractable explicit computation –
tractable with IMEX methods.

S. T. Miller, E. C. Cyr, JS, R. M. J. Kramer, E. G. Phillips, S. Conde, R. P. Pawlowski, IMEX and exact sequence discretization of the multi-fluid plasma model. In press for  JCP



2 Tokamak Related Preliminary Examples



Computational Goals of Tokamak Disruption Simulation (TDS) Center SciDAC-4 Partnership (DOE OFES/ASCR)

Develop and evaluate advanced hierarchy of plasma physics models and scalable solution methods to 
understand disruption physics and explore mitigation strategies to avoid damage to the reactor.

q Attempt is to achieve temperature of ~100M deg K (6x Sun temp.), 
q Energy confinement times O(1-10) min. are desired.
q Plasma instabilities/disruptions can cause break of confinement, huge plasma thermal energy loss, and 

discharge very large  electrical currents (~20MA) into structure. 
q ITER can sustain only a limited number of disruptions, O(1 – 5) significant instabilities. 

Proof-of-principle

Vertical displacement
event (VDE) disruption
simulation in ITER
plasma and wall region.
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An Approximate Block Factorization of 3x3 Jacobin system leads to two 2x2 systems and allows more 
efficient larger Alfven wave CFL simulations (e.g. plasma only region) 



ITER Project: https://www.iter.org/

DOE Advanced Scientific Computing Research (ASCR) / Office of Fusion Energy (OFES)
SciDAC Partnership: Tokamak Disruption Simulation (TDS) Project

Gas Injection Assumed Distribution at 
time t= 0 for Neutral Gas Core Inside 
Separatrix 
• Hydrodynamics of neutral core 

expansion
• Collisional effects
• Ionization/recombination 

• E field interactions for  
charged species 

• In 2D,3D interactions with B 
field for charged species

Dynamics of Neutral Gas Jet 
Injection at an angle wrt B Field
• Hydrodynamics of jet
• Collisional effects
• Ionization/recombination

• E field interactions for 
charged species  

• Interactions with B field 
for charged species

Preliminary Models of Gas 
Injection for Disruption Mitigation

Disruption is a prompt termination of a plasma confinement 
in a tokamak and can be a showstopper for ITER. Mitigate to 
control thermal and current quench evolution. 

https://www.iter.org/


Problem outline: Representative of the core plasma
• Initial ~fully ionized Deuterium plasma at n = 1020,  T = 100ev (~1M degrees K)

• Neutral Argon (Ar0) core introduced      at n = 1024 , T = 10-1ev (~1000 degrees K)

• Parallel B – field is ignorable (due to geometry in 1D so B does not modify transport)

• Domain in x is [0.3m,0.3m]; mesh is 4096 x 1 x 1 elements 

Preliminary 1D Gas Injection Simulations of Higher Z Neutral Gas (He, Ne, Ar ) Cores Expanding into 
a 100ev Deuterium (D+,e-) Plasma

• To attempt to control the loss of plasma internal energy (thermal quench) one idea is to inject 
neutral impurities to enhance radiation loss.

• To mitigate the effect of runaway electrons potentially impacting the wall (electrical current 
quench), an idea is to inject neutrals to enhance dissipation of high-energy electrons.
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Hek

Ark

E.g. 5 moment Ar or Ne plasma model x 10 species = 50 equations  (solved in 3D but only a 1D solution)
Maxwell Equations E,B field                                           =   6 equations  (solved in 3D but only a 1D solution)

56 PDEs

Deuterium Profiles Electron Profile Initial Condition
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Conclusions
• Robustness, efficiency / scalability of fully-implicit /IMEX parallel NK - AMG solvers is very good. 

• Physics-based block decomposition and approximate Schur complement preconditioners must have 
effective approximation of dominant off-diagonal coupling and time-scales in MHD/multifluid 
plasmas represented. Can provide scalable solution of complex multiphysics plasma models.

• Iterative solvers and (nonlinear/linear ) convergence criteria for multiphysics systems is challenging!

• General mathematical libraries and components (e.g. Trilinos) are very valuable for enabling:

• Flexible development of implicit formulations of multiphysics systems (e.g. MHD, multifluid)

• Exploration of advanced physics/mathematical models and PDE spatial discretizations

• Dev. of complex physics-based / approximate Schur complement block preconditioners

• Adoption of well defined, and functionally separated, solution method kernels to promote 
robustness and help in assessment when time-step failure, convergence problems occur. 

• IMEX time-integration, Nonlinear solvers, Linear solvers, Scalable block and AMG 
preconditioning



The End.


