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Motivation

Atmospheric pressure plasmas
e Increasing interest shown in atmospheric pressure plasmas
e Operational simplicity
e Low running cost (no vacuum system required)

e Promising for inactivation of pathogens in medicine, applications in food industry,
agriculture, water purification, atmosphere decarbonization, among others.

e Highly non-equilibrium plasma state (Te>>Ti) which promotes chemical reactions

A key science challenge is to model the main mechanisms involved in the plasma dynamics and
transport of reacting species in order to improve the development of plasma sources
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https://earth.stanford.edu/news/science-behind-decarbonization

Introduction

e The electrons are usually at much higher temperatures compared to ions and the background neutral
gas.

e This highly non-equilibrium plasma state promotes chemical reactions that are either not possible or
efficient in gaseous or liquid states

e The dynamics of the much hotter electrons is characterized by a weakly coupled regime, where the
average Coulomb potential energy is smaller than the average electron kinetic energy

Coupling Parameter Wigner—Seitz radius e <1 Weakly Coupled
Lo Gy (r = a) 3\ /3
ss' = kpT,y “= (R) e [ >1 — Strongly Coupled

e The dynamics of the ion reactive species occurs in a regime characterized with large densities and
smaller temperatures and we believe that corresponds to a strongly coupled regime
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Coupling Parameter Space

Argon plasma, Z=1

21
T=233K Coulomb Potential o(r) = ¢ -
109 , . : dmegr
5 Strong neutral-neutral coupling 2 3
i =) =4 apa
ook S Charge Induced Gind(T) = — q R4 0
: A Dipole Potential Smey T
10" E Strong ion-neutral coupling
i 12 6
T, = 0.1 Lennard Jones P = 4 (g) B (g)
op(r) =4e | (- .

Pressure, Pa

I'in=9.19e-4 | T'i=21.35 | I'nn = 6.96e-6

i L 2, e At room temperature and atmospheric pressure, ions
g \ are expected to be strongly coupled
102 6 : e . . . ] ] .
10° 107 10° 107 e This requires a separate analysis for ion dynamics in the

Tonization fraction, x;

strongly coupled regime
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Molecular Dynamics Simulations

e LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator from Sandia National
Laboratories).

e Electrons were considered as a non interacting background neutralizing species and were not
included in the simulation setup.

e Partially ionized Ar plasma, T=293 K, P =1 atm.

e Short (neutral-neutral), Medium (ion - neutral) and Large (ion - ion) range interactions were
included..

e 3D periodic box of length ~ 25 a.

e Each simulation was performed by fixing the temperature (NVT stage) and then fixing the total
energy (NVE stage). The volume and number of particles remained constant.

e Physical properties were studied in the NVE simulation once the equilibrium was reached.
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lon - Neutral Interactions: Charge Induced Dipole Potential

Purely attractive potential —» Can lead to numerical problems during a MD simulation.

Need to add a repulsive term in order to avoid that particles get too close to each other.

A Y - ; How can we choose the constant C ?
Dind(T) = B ,. ¢

e Too large — May affect the physics of the
x problem by changing the value of ¢ind at the
average interparticle distance a.

le—-19

f — re,=0.11a e Too small — large computational cost

s — DD 00 associated to the requirement on a smaller
- rs,=0.061la .
= o oana timestep.

=== ¢in(n)

x
0.04 0.05 0.06 0.07 0.08 0.09 0.10 011 012
r/a
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MD Simulations: Results at different ro values

Fe =0.046 a

lon-Neutral Min Distance Distribution Neutral-Neutral Min Distance Distribution
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lon-Neutral Bound States
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MD simulations: Starting with a neutral gas

Must improve the simulation setup in order to have a better physical picture of an
experiment !

Simulation Setup:
e NVT-NVE simulations for a neutral Ar gas using the LJ potential

e Instant ionization of a fraction of the particles

e NVE simulation including i-n and i-i interactions

e Study the evolution of the temperature after the ionization
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MD simulations: Disorder Induced Heating

Feo =0.133 a
Ar gas Characteristic regions:
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MD simulations: Evolution of Discharge
Fe=0.133 a

Coulomb Coupling Parameter
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lon-Neutral Temperature Relaxation
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Theory model
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Radial Distribution Function

e Coupling parameter ' > 1 — ions are strongly coupled at equilibrium

e Equilibrium i-i radial distribution function corresponds to an OCP at the same coupling parameter

Ls Ar plasma, x=0.01 tw,;= 150 Ls Ar plasma, x;=0.5 tw;= 800
— Art — Art
OCP I =5.63
1.0 1 1.0 1 <
= =
= = — Art — Art
0.5 1 0.5 1 — Ar — Ar
— Art = Ar
OCP I =3.64
0.0 0.0 T T T T
0 0 1 2 3 4 5
r/a;i r/aji
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Conclusions

e The equilibrium temperature is set by different processes:
o Disorder Induced Heating
o lon-neutral temperature relaxation through collisions
o 3-body recombination

e |ons are strongly coupled at equilibrium (" > 1) in atmospheric pressure plasmas

e Equilibrium i-i radial distribution function corresponds to an OCP at the same
coupling parameter

e Using energy conservation arguments and the concept of DIH the maximum
temperature and equilibrium can be correctly predicted.
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Thank you !




x/n

10 4

0.5 1

0.0 1

-0.5 +

-1.0 1
-1.5 4

-2.5 4

-3.0 1

lon-Neutral Scattering Angle and Cross Section

Scattering Angle
dr/r
=T — 2b/ = /v
2
mu
X(b, Usxeg)/t

— u=10 m/s
u=50 m/s
— u=125mjs
— u=250 m/s
u=500 m/s
— u=1000 m/s |
u=10000 m/s I

1071 10° 10!
bir*

10717 5
&
E 1]
S
S

10-13 4

Cross Section

Q) = o / (1 = cos(x))b db
0

2
ain (m )
¢ e rs=0.025a
- s r=0133a
®
(4]
9
o
-
° o,
®
" 0ge8
® .
By
(1]
10 107 10° 10

Relative Velocity u (m/s)

M UNIVERSITY OF MICHIGAN




MD Simulations: Temperature and Energy evolution

Example of Simulation result, Fo = 0.11 a

le-16
. NVT simulation
=S < 500
5 -1 L a0 .
2 2 The temperature was fixed and
£= é“’“ the Noose Hover algorithm was
2 @ =0 used to reach the desired room
a.
SN | A R S U A temperature
0 200 400 600 800 1000 1200 1400 0 200 00 600 800 1000 1200 1400
t w;i tw;
NVE simulation
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