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Why reduced order model?

Full order model (FOM) is computationally demanding

This would take 1-2 hours'?

Imagine if you do 100,000 times of this

FOM 1s computationally very expensive for large-scale uncertainty quantification, optimization, or
inverse modeling

'Kadeethum et al. (2022, Advances in Water Resources)
?Kadeethum et al. (2021, Computers & Geosciences)



Why non-intrusive approach?
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Motivation

ROM typically works on ‘parameterized PDEs’ and ‘reduced subspace’
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‘ Motivation - continue
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1. Unified framework that works well for both problems that lie within linear and nonlinear manifolds

(proper orthogonal decomposition (pod) yields optimal data compression for linear manifolds) [1]

2. Framework that does not rely on ‘convolutional layers,” which makes our framework applicable to both
structured and unstructured meshes [1, 2]

'Kadeethum et al. (2022, Advances in Water Resources)
ZKadeethum et al. (2021, Nature Computational Science)
Shttps:/ /towardsdatascience.com/simple-introduction-to-convolutional-neural-networks-cdf8d3077bac



Motivation - continue

1. We believe the key to develop a good ROM 1s to produce better reduced manifolds.

2. We extend Barlow Twins (BT) self-supervised learning [1], where BT maximizes the information content
of the embedding with the latent space through a joint embedding architecture

The nonlinear manifolds
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. . i E w )

The nonlinear manifolds are ~ ~ 5
b i e

not really well structure 1{.1;. Al

Zbontar et al. (2021, arXiv:2103.03230)



Methodolog

We first initialize training,
validation, and testing sets.

These parameters could be
material properties, boundary
conditions, or parameterized
geometry representation.

1. Initialization

YE Training set: u = [”(1), u(z), oo ﬂ(M_l):I‘(M)]

Validation set: pyajigation = randomly select 10% of MN*

. 1
Testing set: st = ”Eegt' Hiestr """ Beest » Pest

2) (Mgest—1) (Mtest)J
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We then build the training set
through by querying full order

model for each parameter.

*This 1s the major cost of
building data-driven model.



M eth o d o I o 1. Initialization 2. Full order model (FOM)
ini = [u@® 4@ ... (M-1) ,(M)
. gy Training set: u = [, u@, - u ,nM] up (D), pr (D), T, (u®)
o FOM = :
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Testing set: peest = ["‘test’ Hiest " Peest » Peest

3. Training BT-AE N is total timestep Autoencoder loss or
Nt = ZM Nt® Q) Data compression loss
i=1

encoder

Data compression: training BT-
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- random noise
- Gaussian blur projector

The machine learning model has

one encoder, decoder, and

projector. Barlow Twins loss

C" - Lir = L] + Liw

The main goal 1s to maximizes
Same goes for up, P,

the information content of the
embedding with the latent space
through a joint embedding
architecture.

Resulting in a better reduced
manifolds



. ‘ Methodology

We then map our parameters to
reduced manifolds using ANN.

*We note that we could use other
regressors such as GP or RBE

1. Initialization
Training set: p = [p®, u®@, ... gM-D D]

Validation set: pyaigation = randomly select 10% of MN¢

. 1 2 Miest—1) (M
Testing set: piest = [ﬂgegt' ugegt,...,uges?“ g
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4. Mapping (training ANN)

ANN trained manifold
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) ‘ Methodology

During the online or prediction
phase, we approximate our
quantities of interest through the

trained ANN and trained
decoder.

1. Initialization 2. Full order model (FOM)
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5. Prediction (online phase)
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Physical problems that we test
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Fluid density 1s a function of its concentration and temperature, impacting fluid flow behavior

Examples: geothermal energy recovery, seawater intrusion, storage of nuclear and radioactive waste,
contaminant transport among others.

Depending on system Rayleigh number and the formation heterogeneity, convective mixing can greatly
accelerate CO2 dissolution during geologic carbon storage.




Physical problems that we test - continue
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velocity (1% Brezzi-Douglas-Marini element)
N locally mass
conservative

pressure (plecewise constant)

V-u =/0/  gakAT"H

UK

u+ Vp = zTRa " Ra

oT
—4u-VT =V?T,

ot \
N\

time (4" backward differentiation formula)

temperature (1% enriched Galerkin)

Kadeethum et al. (2021, Computers & Geosciences)
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Results — Heated from side (HFS)

1. We test our model using heated from side problem

[Zhang et al. (2016, Comput. & Geosci)]

2. The flow 1s driven by the change of temperature

on the left side

Parameters

Ra, = [40,80]

Training: 40
Testing: 10
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T=1 70 — 0 T=0
B d
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oT d "X
— =1 _p =0
dy 0y

FEM: temperature BT-AE: temperature  DIFF - BT-AE: temperature
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Results — HFS - continue
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1. We can see that BT model provide almost similar performance as POD model, but much better
than AE and deep convolutional AE (i.e., problem lies within linear manifolds)
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‘ Results — HFS - continue
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1. We can see that the BT model (dashed) has a lower data compression loss (step 3), and it has a
much lower mapping loss (step 4)
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‘ Results - Elder | T=05=0
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Ra
1. We test our model using Elder problem ar oT
. 0 —
[Elder et al. (2017, Fluids) ®_, pm=0 o _,
0x dx
1. The flow is driven by the change of temperature at .y
the bottom T=16_p=0 6_T=06_p=0
dy dy dy
Parameters FEM: temperature BT-AE: temperature  DIFF - BT-AE: temperature
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Training: 40
Testing: 10
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Results — Elder - continue
18

1. We can see that BT model provide almost similar performance as deep convolutional AE (as well as
be able to achieve a very good accuracy with only 4 nonlinear manifolds)
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‘ Results — Elder - continue
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1. We can see that the BT model (dashed) has a higher data compression loss (step 3), but it has a
much lower mapping loss (step 4)
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Conclusions
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1. A ROM framework that works in an optimal way for both linear and nonlinear manifolds

2. A ROM framework that can be applied to both structured and unstructured meshes

3. Uncertainty-aware BT-ROM is in progress to achieve uncertainty quantification.



