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Background: What is Semantic Segmentation?

= Semantic segmentation aims to classify images at the pixel-level

= This is done by assigning a value to each pixel based upon its class
Mineral matrix

One pixel =
10 nm resolution
Mineral matrix Nanopores
Nanopores
Organics

Organics

Focused lon Beam-Scanning Electron Microscopy image of
Marcellus Sandstone (left) and manually segmented image (right)

= Generating accurate segmentations of rock images is critical to geomaterial
characterizations
= Challenges: Complexity in geometry, size, scale, and compositions



Image Data ‘

= QOriginal datasets include 3D microCT and FIB-SEM images 11‘}“{11-_0f 5‘;’2 ol 1]\]“{1- OfI
raining alidation esting Images
= QOriginal images have been segmented with various traditional Images Images
methods (e.g., Yoon and Dewers, 2013 GRL for S-Chalk) 2773 5869 5870
= 128x128 and 128x128xD images are used for 2D and 3D 4812 1050 1050
models (D= # of images in depth) 1593 531 )31
= Dataset is split randomly into training (70%), validation (15%), 11827 2534 2535
and teSting (15%) *Shale training data was augmented to increase # of pore samples
Boise Sandstone Carbonate Chalk (S-Chalk) Carbonate Chalk (L-Chalk) Marcellus Shale

FIB-SEM images at 15

]
I
FIB-SEM images at 10 FIB-SEM images at 10 ‘

MicroCT images at 30 nm resolution ) .
micron resolution (932x620x930) nm resolution nm resolution
(1500x1500x1800) (900x700x500) (900x700x900)



Methods: Model Architectures

U-Net (Ronneberger et al., 2015)

= Models are U-Net based
architectures (U-Net 2D/3D, U-
VGG16, U-ResNet, MultiResUnet)

= U-Net follows “U” shape of T
convolutional neural network e s |
architecture with a feature of skip sy [z

J MultiResU-Net (Ibtehaz et al., 2020) u

§ o F
' . L MulRes Biock 1 Res Pah |

|

connection & MultiResU-Net
accounts for multi-scale features.
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= All models follow an encoder-
decoder architecture
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Encoder extracts feature maps
from input image
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feature maps into a prediction
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5 Methods: Hyperparameters & Transfer Learning

Adam optimizer with a learning rate of 0.001
= Loss: categorical focal loss
Batch size: 196 for U-Net and U-VGG16, 128 for U-Resnet, 64 for MultiResUnet

Early stopping: 100 epochs

Transfer Learning Approach

= Method where model originally trained on

one task leveraged for another VoS orRee) | Kaovedge | (VGSTS o Reshed > Target Labess
= Useful because it can allow for training to
converge at a faster rate and lead to more M H
robust models S S _
" Investigated by initializing VGG16 and ResNet ﬁ;sa%i%iaseﬂ
. . . ImageNet =
models with weights from ImageNet and fine BT —_—

tuning of decoder portion or all parameters o



‘Base Results (test data)

“F-loU” refers to frequency loU

o “Pixel Acc” refers to the pixelwise accur

F-IoU Pixel Acc

U-Net 0.9522 0.9753

U-Net-3D 0.9270 0.9623

U-VGGI16 0.9687 0.9840

U-ResNet 0.9829 0.9913

MultiResUnet 0.9826 0.9912

F-IoU

0.9514

0.9006

0.9519

0.9397

0.9601

1071 1

Model Loss
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validation

Pixel Acc F-IoU

0.9748 0.9219

0.9457 0.8752

0.9749 0.9250

Pixel Acc

0.9573

0.9243

0.9572

0.9687 0.9476 0.9719

0.9794 0.9492 0.9730

Example training plot
showing validation
and training loss as
MultiResUnet is
trained on Sandstone
data

F-IoU Pixel Acc

0.9332 0.9653

0.5989 0.7480

0.7966 0.8863

0.8948 0.9444

0.9444 0.9713



Predictions for Selma
Chalk Data

(Only Base Models
Shown)

Sample images, predictions, and
error maps from the testing split of
the Selma chalk dataset. On the
error maps, white indicates label
and prediction agree, blue
indicates pore was predicted but
expected solid, red indicates solid
was predicted but expected pore.

Original Images and Labels

Preds

Error Maps

Preds

Error Maps

Preds

Error Maps

Preds

Error Maps

Preds

Error Maps




‘ Transfer Learning Results (test data)

= “Fine-tune” refers to the revision of weights from ImageNet as training
progresses.

= Numbers below given values indicate a comparison to the base case (e.g., (+0.1)
indicates the metric improved by 0.1)

_ F-IoU Pixel Acc F-IoU Pixel Acc F-IoU Pixel Acc F-IoU Pixel Acc

0.9617 0.9805 0.9580 0.9784 0.9347 0.9655 0.6839 0.8121

RRMSS LR  (0.0070)  (-0.0035)  (+0.0061) (+0.0036) (+0.0097) (+0.0083) (-0.1127) (-0.0742)

0.9732 0.9863 0.9525  0.9751  0.9459  0.9709  0.9363 0.9671
(-0.0097)  (-0.0050) (+0.0128) (+0.0064) (-0.0017) (-0.0017) (+0.0415) (+0.0227)

MultiResUnet 0.9826 0.9912 0.9601 0.9794 0.9492 0.9730 0.9444 0.9713

U-Resnet-fine tune



Methods: Ensemble Approach

= Rather than generating predictions from a single model, multiple models are
trained and then their predictions are combined

" |n theory can reduce the variance of models and lead to better predictions

" |n our implementation:
Model trained for 200 epochs, saving weights every 5 epochs

Best 3 models (based on validation sets) from 200 epochs are used to make
ensemble predictions (i.e., average prediction)

Also tested special cases where models are drawn from a certain period of epochs
in training (e.g. 3 models only taken from epochs 100-150)



Ensemble Results (Special Cases)

=  Models were trained for 300 epochs
=  Each respective case comes from a different epoch range:
o C1:[100-300], C2: [100-200], C3: [250-300]
= |n table case which achieved highest F-loU is shown (indicated by C1, C2, or C3 below values)

_ F-loU Pixel Acc. F-loU Pixel Acc. F-loU Pixel Acc. F-loU Pixel Acc.

U-Net 0.9768 e 0.9569 0.9775 0.9512 0.9741 0.9497 0.9741
ensemble (C1) ' (C1) (C2) (C3)
U-Resnet 0.9878 0.9938 0.9621 0.9804 0.9568 0.9773 0.9522 0.9754
ensemble (C2) (C1) (C1) (C3)
MultiResU-Net 0.9840 0.9920 0.9646 0.9818 0.9575 0.9776 0.9503
0.9745
ensemble (C3) (C1) (C1) (C1)



Conclusions

" Deep learning architectures can successfully be applied to the task of semantic
segmentation for rock images and can perform better than manual segmentation to
recover natural morphology of original images

" Ensemble approach consistently improved performance
= Use of transfer learning improved accuracy and training speed in most cases
= 3D model underperformed

May be due to lack of training data and enough training (a small # of epochs in this work)

Complications can arise when using depth data, such as unpredictable variations in
illumination between images

" Ensemble approach with hyperparameter tuned (results not shown) tend to improve
performance in all cases

= Data labeling and curation will be explored to improve supervise learning process



