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ABSTRACT: Rock salt is being considered as a medium for energy storage and radioactive waste disposal. A Disturbed Rock Zone
(DRZ) develops in the immediate vicinity of excavations in rock salt, with an increase in permeability, which alters the migration of
gases and liquids around the excavation. When creep occurs adjacent to a stiff inclusion such as a concrete plug, it is expected that
the stress state near the inclusion will become more hydrostatic and less deviatoric, promoting healing (permeability reduction) of
the DRZ. In this scoping study, we measured the permeability of DRZ rock salt with time adjacent to inclusions (plugs) of varying
stiffness to determine how the healing of rock salt, as reflected in the permeability changes, is a function of the stress and time.
Samples were created with three different inclusion materials in a central hole along the axis of a salt core: (i) very soft silicone
sealant, (ii) sorel cement, and (iii) carbon steel. The measured permeabilities are corrected for the gas slippage effect. We observed
that the permeability change is a function of the inclusion material. The stiffer the inclusion, the more rapidly the permeability reduces

with time.

1. INTRODUCTION

Rock salt is being considered as a medium for energy
storage and radioactive waste disposal (Schulze, Popp, &
Kern, 2001; Tsang, Bernier, & Davies, 2005; Yang,
Daemen, & Yin, 1999) due to its extremely low
permeability and low porosity. During the construction
and/or facility operations, a Disturbed Rock Zone (DRZ)
or Excavation Damaged Zone (EDZ) develops in the
immediate vicinity of the excavation, with an increase in
permeability (Gevantman & Lorenz, 1981; Schulze et al.,
2001; Tsang et al., 2005). The increased permeability of
the DRZ alters the migration of gases and liquids near the
excavation.

Due to the deviatoric stress state that develops around
excavations, rock salt creeps. When creep occurs adjacent
to a stiff inclusion such as a concrete plug, it is expected
that the stress state near the inclusion will become more
hydrostatic and less deviatoric, promoting self-healing
(Gevantman & Lorenz, 1981; Yang et al., 1999) of the
DRZ, including permeability reduction. Healing adjacent
to a concrete plug would limit bypass of the plug through
the DRZ and thus be conducive to establishing a more
effective seal system.

Healing of DRZ salt is believed to occur as grain
boundaries, damaged from deviatoric stresses, are forced
back together and reestablish very tight contact and low
permeability. Healing is a function of stress, temperature,
moisture conditions, time, and quantity of impurities (e.g.,
clay). Although numerous experiments have been
conducted on the consolidation and resulting permeability
decrease of granular salt, less is known about the healing
of damaged rock salt.

The objective of this scoping study is to inform future
systematic analysis and evaluate the healing of DRZ rock
salt, as reflected in the permeability changes, as a function
of stress, time, and the stiffness of a central inclusion.

2. MATERIALS AND METHODS

Cylindrical samples of rock salt (10.2 cm diameter, 10.3
cm long) from the DRZ surrounding excavations of the
Waste Isolation Pilot Plant (WIPP) were used in this study
(Figure 1). The samples ends were polished dry, and a 2.4
cm diameter central hole was carefully drilled along the
axis of the core.

Specimens were created with three different inclusion
materials, and were labeled S1, S2, and S3. The properties
of the central inclusions used in this study are presented
below:
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Specimen S1: soft type S sealant inclusion (Shore A
hardness of 15, ASTM C-920) with a modulus of
elasticity less than 2 GPa

Specimen S2: Sorel cement inclusion (a magnesium-
based cementitious material) with a modulus of elasticity
~29 GPa (measured using Tinius Olson Compression
equipment)

Specimen S3: stiff carbon steel inclusion with a Young’s
modulus of 200 GPa (epoxy used as filler had modulus of
elasticity of about 92-109GPa)
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Figure 1 — Rock Salt specimen S3, with the central plug of
carbon steel

A general overview of the experimental system is shown
in Figure 2. The rock salt specimen is placed in a pressure
vessel and subjected to hydrostatic stress conditions.
Radial stress was applied to the specimen using hydraulic
pressure behind a core holder sleeve that is integrated into
the triaxial cell. The radial stress is always greater than
the pore pressure to avoid fluid bypass along the sleeve-
sample interface. An equivalent axial stress was applied
to the specimen through the hydraulically activated end
caps of the cell. The hydrostatic confining stress was
monitored by a pressure gauge with an accuracy of 0.01
MPa. The hydrostatic stress during all tests reported here
were conducted at 13.8 MPa, which corresponds to the
expected geostatic stress at a depth of about 700 m.

A permeameter system was used to conduct steady-state
gas permeability measurements. Gas injection line and
pressure measurement transducers were connected to one
of the end cap fittings. For all tests, the downstream line
was vented to atmosphere. The upstream pressure was
measured with pressure transducers (Omega DPG 409
and PX 409) with an accuracy of 1% of full scale. The gas
flow rates were controlled using two mass flow
controllers (Alicat Scientific Inc.) of different flow ranges
(with accuracy +1% of total flow range) connected in
parallel to the upstream side of the specimen. Most of the
flow test used the flow-controlled system for quickly
achieving the steady-state. The pressure-controlled
measurements were also used for measuring relatively

lower permeabilities (< 102! m?), and mass flow meter
(Alicat Scientific Inc. with accuracy +2% of total flow
range) and soap bubble flow meter were collectively used
to measure the flow rates. The nitrogen gas flow tests
were conducted at 25 £+ 0.5 °C. The typical test duration
was 80 to 100 hours. During this time, the permeability as
a function of time was observed.
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Figure 2 — Schematic of the flow test configuration

At sufficiently low flow rates, flow is described by
Darcy’s Liw (Bear, 1972)
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where VP is the pressure gradient, u is the dynamic fluid
viscosity, Q is the volumetric flow rate, k is the
permeability, and A4 is the flow cross-sectional area.

For the steady-state flow of a real gas, Equation 1 can be
rewritten as below for interpreting the permeability
((Anwar, Chojnicki, Bettin, Taha, & Stormont, 2019)

M(P* — P2 _ pQ

= 2)
2pzRtL kA

where M is the molecular weight, P, is the downstream
pressure, P, is the upstream pressure, p is the gas density
(based on the laboratory atmospheric pressure), z is the
compressibility factor, R is the gas constant, T is absolute
temperature, L is the length over which pressure drop
takes place.

Gas flow can be affected by molecular slip phenomenon,
which arises due to the interaction between gas molecules
and pore walls (Klinkenberg, 1941). The measured or
apparent permeability (e.g., the permeability interpreted
from Equation 1 or 2) can be related to the intrinsic or
slip-corrected permeability (ko) as a linear function of
reciprocal mean pressure (P,,) (Anwar et. al, 2019)

k= k14 %) 3)



where b is the gas slippage factor. From the uncertainties
in measured quantities, the error in the reported
permeabilities is + 5% for each series of measurements.

3. RESULTS AND DISCUSSION

3.1. Flow test

Permeability and gas slippage factors of specimens S1,
S2, and S3 were interpreted from measured gas flow data
as described in the previous section. The permeability of
the inclusion materials is required to interpret
permeability from measured values. The permeability of
the silicon and carbon steel was below the measuring
capability of the laboratory permeameter and was
considered impermeable. The permeability of a control
specimen or blank prepared from sorel cement was
measured. The permeability is about 2.8 x 1072! m?, which
is orders of magnitude lower than DRZ rock salt
specimens at the same confining pressure.

The measured slip corrected permeabilities for all three
different rock salt specimens and the sorel cement over
time are graphically presented in Figure 3. The flow test
results reveal that the initial DRZ rock salt permeabilities
of all three specimens were in the range 1074 to 1075 m?2.
These values are orders of magnitude greater than that of
intact rock salt which has an extremely low permeability
(less than 1072°|m? (Sutherland & Cave, 1980)).

The rate of permeability reduction was different for the
three specimens. The initial permeability of specimen S1,
the DRZ rock salt specimen with the soft silicon plug
under confining stress, was about 2 x 107> m?. The final
permeability of the specimen, after 100 hours, was found
to be about 9 x 10710 m?.

* S1 -Salt core with soft type S silicone plug

® S3-Salt core with steel plug

For specimen S2, the DRZ rock salt specimen with the
sorel cement, the initial permeability was about 1.5 x
107" m?, and the final permeability reduced to about 3.7
% 1072 m? after 80 hours. The permeability measured for
specimen S3, the DRZ rock salt specimen with the steel
rod, was initially about 3.5 x 107" m? and the final
permeability was found to be about 3 x 102! m? after only
44 hours.

The slowest permeability reduction was observed for
specimen S1 and the fastest permeability reduction was
observed for specimen S3. As observed in Figure 3, the
rate of permeability reduction for S2 was greater relative
to the rate of permeability reduction for S1, but lower than
the same of S3. The flow test measurement was
terminated once the permeability of both the specimens
S2 and S3 approached the permeability of the sorel
cement.

3.2.  Gas slippage factor
Gas slip factors as a function of measured permeability of
rock salt are presented in Figure 4. The best-fit straight
line through the data yields,

b =1.47 k031 @)

where the units of b and k are in Pa and m?, respectively.

Empirical relationships between gas slip factor and
permeability derived from two previous studies (Heid,
McMahon, Nielsen, & Yuster, 1950; Jones & Owens,
1980) are given in Table 1 for comparison to the present
study. All three studies yield comparable relationships.
The theoretical value of the exponent is -0.5 for an
assumed geometry of uniform cylindrical capillaries;
empirical exponent values less than -0.5 have been
attributed to actual pore geometries differing from
uniform cylindrical capillaries (Heid et al., 1950).
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Table 1 Empirical equations for estimating gas slip factor (b)
for different porous media

Correlations | Equation | * ermeability | Material
range (m?) (porous)
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Note: The units of b and & are in Pa and m?, respectively.
4. CONCLUSION

The permeability of rock salt was interpreted from a series
of gas flow measurements made under a hydrostatic stress
with time.

These measurements reveal that rock salt from the DRZ
has permeability orders of magnitude greater than intact
rock salt. The permeability of specimen S1 (negligible
stiffness, equivalent to no plug) did not decrease
significantly with time, whereas the permeability of
specimens S2 and S3 decreased orders of magnitude, to
values similar to intact rock salt. The rate of permeability
reduction was considerably greater for the specimen S3
(greatest stiffness). Hence, we conclude that the stiffer
(greater modulus of elasticity) the central inclusion/ plug,
the more rapidly the permeability of DRZ rock salt
reduces with time.

The measurements included significant gas slippage.
Consequently, gas slippage factors were determined for
the specimens under confining stress and used in
interpreting intrinsic permeability values from the data.
An empirical relationship was found between the gas slip
factor and permeability that is similar to relationships for
other porous media.

The permeability measurements for different hydrostatic
stresses were not included in the experimental study. To
obtain a systematic relationship and to better understand
the phenomenon, further analytical measurements such as
volume strain measurement, structural integrity, porosity,
damage measurement (via density or wave velocity
measurement) and flow tests with multiple confining
stresses is recommended for future studies.
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