
Sandia National Laboratories is a
multimission laboratory managed

and operated by National Technology
& Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of

Honeywell International Inc., for the
U.S. Department of Energy’s National
Nuclear Security Administration under

contract DE-NA0003525.

Flexible CI/CD Software
Tools for the Dakota project

J . Adam Stephens , Br ian M. Adams, Wesley P .
Coomber , E l l iot t M. R idgway

Sandia Nat ional Laborator ies

Tri-lab Advanced Simulation & Computing Sustainable Scientific
Software Conference – May 25, 2022

SAND2022-6778CThis paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in
the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Outline

• Overview of Dakota
• What is Dakota?
• Dakota’s development, test, and deployment processes

• Dakota’s new build/test/deploy software tools
• Why we junked our old ones
• Principles for the redesign
• Implementation

• Conclusions

What’s Dakota?

Sandia-developed, open-source, CLI+GUI software for black-box
ensemble analysis of computational simulations

3

• Began as an LDRD in 1994
• Initial optimization focus; now overtaken by UQ

• Around 15 developers and 5 FTEs per year
• Primarily engineers and mathematicians

History

• Production – 100s of users at the Tri-labs and 1000s around the world
• Research - support collaborations between Sandia and external researchers

and rapid deployment of research to mission problems

Team

• *Nix, OS X, Windows
• Desktops, HPCs
• Mix of internal and external builds

Usage

Platforms

Development Process4

master

devel

6.16

featureA featureB

• Commits to devel trigger build/test on a representative subset of supported platforms
• Nightly build/test of devel provide feedback for all supported platforms

Release branches drawn from master

Feature branches are drawn from devel

Testing Strategy

• devel is main line of
development

• Tests must pass on
baseline platform

Tests must pass on all platforms

Development Process5

master

devel

6.16

featureA featureB
• devel is main line of

development
• Tests must pass on

baseline platform

Tests must pass on all platforms

Release branches drawn from master

Feature branches are drawn from devel

Deployment
Dakota has twice-yearly versioned releases and daily stable releases

• Both are installed on internal supported platforms and deployed to our website for download
• Stable releases are a way to get bugfixes and new features into users’ hands quickly
• Versioned releases receive higher scrutiny, include updated documentation, and our GUI

CI/CD Tools Rewrite

Dakota embarked on a re-write of its CI/CD software tools in FY21
• Prior to the re-write

• Used Jenkins to orchestrate build and test
• Freestyle jobs with Bash or Windows Batch build steps
• These ran layers of scripts and applications written in bash, bat, Python, Perl, Java, and CMake

• Shortcomings:
• Missing features – We wanted to easily build and deploy any branch to our website and to

internal supported platforms,
• Low reliability – The existing tools were buggy, often in ways that masked problems
• Maintainability – A hodgepodge of scripts that contained hard-coded configuration information
• Poor insight - It was often difficult to pinpoint the cause of build system or test problems
• Lack of version control – Some scripts and configuration lived in a git repo, but much was hard

coded in Jenkins build steps and other web configuration

6

Principles for the Rewrite

• Strong separation of code from configuration

• Follow “clean code” guidelines

• Flexibility in configuration (Which platforms? What criteria?)

• Easy troubleshooting

• Code portability

7

Aimed at overcoming the limitations of the existing tools

Major Components

Jenkins
• Top-level Orchestration
• SEMS resource
• Primarily Pipeline

projects

Build Configurations
• Specify what and how
• Platform specific

Environment setup and
build presets

jenkota
• Intermediate layer
• Custom written Python

package

CMake
• Dakota's build system

8

Organization9

Jenkins Pipeline Projects jenkota

Dakota’s CMake build system

Build
Configurationsstrategy

Environment setup

Bu
ild

 p
re

se
ts

LEGEND
RUNS

CONFIGURES

Jenkins

• Jenkins was a natural choice because of Dakota team experience and SEMS support

• In Jenkins Pipeline projects, build/test/deploy processes are scripted in a DSL

• Pipeline projects offer several benefits:
• Power and flexibility for creating build/test/deploy processes in code
• Version control
• Mechanisms for code reuse
• Stage-oriented control and reporting

10

Jenkins provides top-level orchestration of build, test, and deploy

Build Configurations

Current configurations

• Continuous – Build/test a subset of platforms

• Stable – Build/test/deploy all platforms;
merge devel to master

• Branch – On-demand, custom platform list
and operations

Three parts -

• strategy for performing a set of builds and
deployments (JSON configuration file)

• Environment setup – platform-specific
procedures that contain limited operations
(e.g. module load, env var setting)

• Build presets – Cmake cache files that tailor
Dakota’s build system to specific platform

11

Build Configurations specify what and how to build, test, and deploy

Stable strategy.json

jenkota Python package

• Developed using “clean code” practices, including TDD

• Command line interface★: $ python3 -m jenkota.builddriver configure stable snlsuper rhel7

12

jenkota is used by Jenkins Pipelines to build, test, deploy, and other tasks

Module Description
builddriver Load the environment and run CTest to configure, build, test, etc.
evaluate Compare test results and other artifacts to criteria
install Install Dakota on an internal platform (CEE LAN, HPC)

web_deploy Make Dakota available on our website
paramify gzip and base64 encode
stable Manage installation of stable builds
report Prepare an email report

★ Credit: Jason Gates

CMake

• Dakota uses CMake for build, test, and packaging.

• A CTest script is the entry point for our automated build system
• -D arguments specify the operations (configure, build, test, package, etc) to run
• This interface is wrapped by jenkota.builddriver

13

Dakota’s build system is CMake-based

Organization14

Jenkins Pipeline Projects jenkota

Dakota’s CMake build system

Build
Configurationsstrategy

Environment setup

Bu
ild

 p
re

se
ts

LEGEND
RUNS

CONFIGURES

Good Outcomes

• Increased confidence that things are working as they ought

• Easier to identify where processes went wrong

• Adding new platforms and features to our build system has become far easier

• Automated deployment of stable builds has had direct impact on an L2 milestone that
the Dakota team is responsible for

• Releases are faster and require less manual work

• Not everything is perfect..
• We designed a lot of flexibility into the system. Maybe too much.
• Jenkins pipeline limitations

• Overall we’re happy

15

