This paper describes objective technical results and analysis. Any subijective views or opinions that mightlbelexpressed}in|
the paper do not necessarily represent the views of the U.S. Department of Energy or the United States'Government.

SAND2022-6778C

Sandia
National
Laboratories

Flexible CI/CD Software
Tools for the Dakota project

J. Adam Stephens, Brian M. Adams, Wesley P.
Coomber, Elliott M. Ridgway

Sandia National Laboratories

©ENERGY NISH
Wamrm Acvmee Brisfy Ambremabue
Sandia National Laboratories is a
multimission laboratory managed
and operated by National Technology
& Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of
Honeywell International Inc., for the
U.S. Department of Energy’s National
Nuclear Security Administration under
contract DE-NA0003525.

Tri-lab Advanced Simulation & Computing Sustainable Scientific
Software Conference - May 25, 2022

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering [SolutionsfofiSandia,|LLC, alwhollylowned!
subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administrationfundercontract DE-NA0003525.

Outline

 Qverview of Dakota
« What is Dakota?

- Dakota’s development, test, and deployment processes

» Dakota’s new build/test/deploy software tools
* Why we junked our old ones

* Principles for the redesign
* Implementation

 Conclusions

DAKOTA

Explore and predict with confidence.

s | What's Dakota?)

Sandia-developed, open-source, CLI+GUI software for black-box
ensemble analysis of computational simulations

* Began as an LDRD in 1994
* Initial optimization focus; now overtaken by UQ

* Around 15 developers and 5 FTEs per year
* Primarily engineers and mathematicians

* Production - 100s of users at the Tri-labs and 1000s around the world

U Sa ge * Research - support collaborations between Sandia and external researchers
and rapid deployment of research to mission problems

* *Nix, OS X, Windows
* Desktops, HPCs
* Mix of internal and external builds

Platforms

+ 1 Development Process

Release branches drawn from master

< <

6.16 @—@-
Tests must pass on all platforms

master < .* " « .‘

/

4

)
devel « ‘: ‘:f: ; ‘: < e .
devel is main line of
development featureA .< featureB < .:

Tests must pass on
baseline platform

A

Feature branches are drawn from devel

Testing Strategy

« Commits to devel trigger build/test on a representative subset of supported platforms
« Nightly build/test of devel provide feedback for all supported platforms

s | Development Process

Release branches drawn from master

6.16 @< ‘:
Tests must pass on all platforms

master < .* " « .‘ '

/

4

devel ——@- o—6—0 60O
* devel is main line of
development featureA .= featureB < .<

e Tests must pass on
baseline platform

F 3
F 3

A

Feature branches are drawn from devel

Deployment

Dakota has twice-yearly versioned releases and daily stable releases
« Both are installed on internal supported platforms and deployed to our website for download
« Stable releases are a way to get bugfixes and new features into users’ hands quickly
« Versioned releases receive higher scrutiny, include updated documentation, and our GUI

s |1 ClI/CD Tools Rewrite

Dakota embarked on a re-write of its CI/CD software tools in FY21

* Prior to the re-write
* Used Jenkins to orchestrate build and test

* Freestyle jobs with Bash or Windows Batch build steps
« These ran layers of scripts and applications written in bash, bat, Python, Perl, Java, and CMake

* Shortcomings:

* Missing features - We wanted to easily build and deploy any branch to our website and to
internal supported platforms,

* Low reliability - The existing tools were buggy, often in ways that masked problems
* Maintainability - A hodgepodge of scripts that contained hard-coded configuration information
« Poorinsight - It was often difficult to pinpoint the cause of build system or test problems

« Lack of version control - Some scripts and configuration lived in a git repo, but much was hard
coded in Jenkins build steps and other web configuration

7 I Principles for the Rewrite

Aimed at overcoming the limitations of the existing tools
« Strong separation of code from configuration
* Follow “clean code” guidelines
 Flexibility in configuration (Which platforms? What criteria?)
- Easy troubleshooting

« Code portability

JSON

AN

Jenkins Build Configurations jenkota CMake

* Top-level Orchestration * Specify what and how * Intermediate layer * Dakota's build system

* SEMS resource * Platform specific * Custom written Python
* Primarily Pipeline Environment setup and package
projects build presets

I
g | Major Components m
I

o 1 Organization

Jenkins Pipeline Projects

stage("Test") {
try {
python("jenkota.builddriver test"
result = attach_test_results(result
result.stages.test = 'SUCCESS'

r catchlerr) A

result.stages.test = 'FAILURE'

result = attach_test_results(result

throw err

dakota_builder_public_vortex

@ Q1 dakota_builder_public windows
@ :6: dakota_builder_rhel7
A
e strategy | ==
LEGEND
RUNS >
CONFIGURES== === =»

jenkota

invoke_ctest(command, printing):
""URun ctest"""
command_str = " ".join(command)
logger.info(f"Invoking ctest using the command: {command_str}")
p = subpr 1(command, universal_newlines= .
stdou yprocess.PIPE, stderr=subprocess.STDOUT)
with p.stdout:

log_ctest_output(p.stdout, printing)
exitcode = p.wait() e

return exitcode

4

Environment setup

Build
Configurations =%

Build presets
i
4

Qakota’s CMake build systey

0 1 Jenkins

&

Jenkins provides top-level orchestration of build, test, and deploy

« Jenkins was a natural choice because of Dakota team experience and SEMS support

* InJenkins Pipeline projects, build/test/deploy processes are scripted in a DSL

 Pipeline projects offer several benefits:

- Power and flexibility for creating build/test/deploy processes in code

« Version control
« Mechanisms for code reuse
« Stage-oriented control and reporting

Setup Clone Configure Build
Average stage times: 32ms 275 Tmin &7s 13min 47s
(Average full run time; ~55min
T 3?5]
May 18 @ 14min 9s
028
May 18 @ Osg 16min 24s

01:26

Test

37min 3s

22min 9s

31min 55s

stage("Test") {
try 4
python("jenkota.builddriver test"
result = attach_test results(result
result.stages.test = 'SUCCESS'
r catch(err) A
Package Publish result.stages.test = 'FAILURE'
result = attach_test results(result

Tmin 53s 11s

throw err

Build Configurations
Build Configurations specify what and how to build, test, and deploy

* Dakota * Build Configurations * Repository

Current configurations
master build-configurations | stable | strategy.json Find file Blame History Permalink

« Continuous - Build/test a subset of platforms

Increase time limits fsof2ede | [
" John Adam Stephens authored 1 week ago

« Stable - Build/test/deploy all platforms;
merge devel to master B strtegyison (3 0% o | weoo | T T Yy

{

* Branch - On-demand, custom platform list iabete: “stable.adate",
and operations

"builds": {
“snlsuper-rhel?": {

"project™: "dakota_builder_rhel7",

"node_label": “0S_RHELT",
Th ree pa rts - "total_time_limit": 378,

“run_time_limit": 128,
"python_wrapper": “source fprojects/sems/modulefiles/utils/sems-module
"archive_source": true

« strategy for performing a set of builds and h

. . . "snlweb=rhel?": {
deployments (JSON configuration file) oojecte: “doora g e,
“total_time_limit": 378@,

[} EnVironment Setup —_ platform_speCific “python_wrapper": “source /projects/sems/modulefiles/utils/sems—-module

"archive_source": true

procedures that contain limited operations otttz ¢

(e.g. module load, env var setting)

"total_time_limit": 378,
“run_time_limit": 1280,

* Build presets - Cmake cache files that tailor rarchie.sourcen, true e Ao i s mute
Dakota’s build system to specific platform

Stable strategy.json

> 1 jenkota Python package

Jjenkota is used by Jenkins Pipelines to build, test, deploy, and other tasks

« Developed using “clean code” practices, including TDD

eI [l R ERIEla=Id=2aM$ python3 -m jenkota.builddriver configure stable snisuper rhel7

~Module | Description

builddriver Load the environment and run CTest to configure, build, test, etc.
evaluate Compare test results and other artifacts to criteria
install Install Dakota on an internal platform (CEE LAN, HPC)
web deploy Make Dakota available on our website
paramify gzip and base64 encode
stable Manage installation of stable builds
report Prepare an email report

* Credit: Jason Gates I

3 | CMake

Dakota’s build system is CMake-based
- Dakota uses CMake for build, test, and packaging.

« A (Test scriptis the entry point for our automated build system
- -D arguments specify the operations (configure, build, test, package, etc) to run

« This interface is wrapped by jenkota.builddriver

14 ‘ Organization

Jenkins Pipeline Projects

stage("Test") {
try {
python("jenkota.builddriver test"
result = attach_test_results(result
result.stages.test = 'SUCCESS'

r catchlerr) A

result.stages.test = 'FAILURE'

result = attach_test_results(result

throw err

dakota_builder_public_vortex

@ Q1 dakota_builder_public windows
@ :6: dakota_builder_rhel7
A
e strategy | ==
LEGEND
RUNS >
CONFIGURES== === =»

jenkota

invoke_ctest(command, printing):
""URun ctest"""
command_str = " ".join(command)
logger.info(f"Invoking ctest using the command: {command_str}")
p = subpr 1(command, universal_newlines= .
stdou yprocess.PIPE, stderr=subprocess.STDOUT)
with p.stdout:

log_ctest_output(p.stdout, printing)
exitcode = p.wait() e

return exitcode

4

Environment setup

Build
Configurations =%

Build presets
i
4

Qakota’s CMake build systey

s | Good Qutcomes

* Increased confidence that things are working as they ought
« Easier to identify where processes went wrong
« Adding new platforms and features to our build system has become far easier

« Automated deployment of stable builds has had direct impact on an L2 milestone that
the Dakota team is responsible for

- Releases are faster and require less manual work

* Not everything is perfect..
* We designed a lot of flexibility into the system. Maybe too much. .. o
- Jenkins pipeline limitations il

* Overall we're happy

