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« The Null Hypothesis and its generalization
« Foundations of verification and Validation
« Applying the null hypothesis to V&V

*  An example from verification of shocks

Bottom Line: Working from an assumption that the |
code/model is “wrong” leads to better evidence more
convincing that it is correct. |

How to best build a strong case that a code is
correct? |

| Outline @!I



. | The classical Null hypothesis

The null hypothesis is a mainstay of science using statistical
studies and often proved via P values

The basic premise is looking at the evidence that the central
hypothesis of the study can be untrue, or no effect

This is a direct assault on the study and whether the
evidence could say the hypothesis in utterly false

For much of science, the null hypothesis is an expected
premise to be directly addressed in a study

There is the less common and complementary idea of the
alternative hypothesis
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Verification and validation are essential to
the quality of simulation.

c)omplemem;a r

Verification = Solving the equations correctly

— Mathematics/Computer Science issue
— Applies to both codes and calculations

« Validation = Solving the correct equations
— Physics/Engineering (i.e., modeling) issue
— Applies to both codes and calculations

« Code Verification is used to determine the correctness of the
code, the rate of convergence is primary, error is secondary.

« Solution Verification is error/uncertainty estimation, the error
Is primary and the rate of convergence is secondary




Generalizing the Null Hypothesis to V&V

5

How can these concepts apply to verification and validation? ‘

«  The first notion is associated with mindset: do we approach
V&YV as if the code or model is correct? Or incorrect? |

« The correct mindset leads to biasing analysis of evidence
toward affirmative views of the code or model.

» The incorrect mindset looks at evidence with a bias toward
being wrong, and if that evidence is unconvincing the case |
for being correct is stronger.

«  The null hypothesis as a philosophy makes you ask harder |
qguestions of the code or model. |



The Advantages of the Null Hypothesis as a
> "Philosophy

n

This avoids tendencies to approach V&V as a “box checking
exercise where V&V is simply a prelude to useful work.

This avoids tendencies to reject information that reflects
poorly on the code or model

The null hypothesis orients the study toward harder
guestions, and more convincing evidence.

The harder questions will spur code developers or analysts
to build better codes or models. Itis much more likely to
find problems and reflect these back to “stakeholders”

Probably more necessary in code verification than any of
the other activities in V&V

o



An example of the Null Hypothesis in Action: I
" "Verification of a shock physics code @!

» Shock physics codes are essential for solving a broad class of ‘
problems in defense science

» These methods and codes are mature. Testing has been |
done for decades, but there are long standing shortcomings

» There is a well developed mathematical theory and this
theory is your friend for verification work |

« There are common accepted practices that show standard
verification practices and their shortcomings |

» These practices undermine the value of code verification for
solution verification and validation |



Shock physics methods and codes
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» The computation of shock physics was transtformed by high
resolution methods during the 1970’'s and 1980's.

» These high resolution methods allow the merger of high-
order approximations for discontinuous flows associated
with shocks

- Powerful mathematical theory guides the construction of
the codes and the understanding of the results of the
analysis

» Shock waves also have serious limitations on their accuracy I
with solutions relegated to first order accuracy or less



9

For all verification work mathematical theory is your best friend!

The Lax-Richtmyer equivalence theorem: the foundation of
verification

Relevant mathematical theory: a summary @!I

The Lax-Wendroff theorem demanding conservation form for
weak solutions

Entropy conditions needed to choose the physically relevant |
weak solution

The Majda-Osher theorem, first-order accuracy for |
discontinuous solutions |

The Hou-LeFloch theorem, loss of convergence to correct |
solutions without conservation form |



Verification and numerical analysis are |
intimately and completely linked. @!

The results that verification must produce are defined by ‘
the formal analysis of the methods being verified.

The numerical analysis results are typically (always)
defined in the asymptotic range of convergence for a
method.

= This range is reached as the discretization parameter
(mesh, time step, angle, etc.) becomes “small” i.e.,
asymptotically “close to zero”.

Practically, the asymptotic range is rarely achieved by
verification practitioners in meaningful simulations. I

Hence verification is not generally practiced where it is
formally valid!
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One can being testing the full Euler equations with a smooth
wave (that will form a shock). It is smooth until the shock
forms and can expose formal order of accuracy.

Introduced by Andy Cook and Bill Cabot (LLNL) ‘
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Before the shock forms the results are analytical and a spectral @!I

plot is useful. Gives interesting information about methods.
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The piecewise linear method is the basis of the second-
order methods in many shock codes
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A parabolic reconstruction is much better
and the method is very compact, i.e., great

for modern architectures,
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Integrated Error = 0.080, ~6 times better!




This is a common wave form to test
methods used for shocks. It has a
Gaussian, square, triangle, and sin
squared. The square wave means
it is limited to first-order accuracy
or less

Methods and algorithms will
improve the performance of
a code on every single platform:

laptop, to desktop, to cluster to
capacity machine to capability
machine
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Accuracy can produce the same quality

I
answer with much less effort @!
For shock-hydro
problems we can Error Ratio [3-DN* | AMRN3 |
estimate the ) 1 1
impact
1/2 (PPM) 16x 8X |
First-order 1/3 (CPPM) 81x 27X
?ccuracy ) f 1/6 (5t O) 1296X 216X
convergence), for
prob'en%s ] /1 6 4096)( |

containing shocks,
and if cost is
effectively equal.

high-order methods have a slightly higher rate of |
convergence |



Let’s look at the presentation of shock problems in detail. @!I

From Sod’s classical 1978 paper (. Comp. Phys. 27)
(i.e., where Sod's problem comes from) “Hello World” for Shocks
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Move forward to Harten’s paper introducing TVD methods

From Harten'’s classical 1983 paper (J. Comp. Phys. 49)

(i.e., where TVD methods are introduced)
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Move forward another decade to Huynh’s excellent paper
in SIAM J. Num. Anal.

From Huynh's 1995 paper (SIAM J Num. Anal. 49)
(i.e., where a fantastic overview of methods is provided)
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Staying in this era, but returning to J. Comp. Phys.

From Jiang and Shu’'s WENO paper (/. Comp. Phys. 126

- introduced 5t order WENO)
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Greenough & Rider, J. Comp. Phys., 194, 2004 (GR2004).



Greenough & Rider (2004) provided quantitative errors
22 1 for these problems.

Table 5
E;, and E;__ errors and convergence rates for PLMDE on Sod’s shock tube at different grid resolutions
N EpL L, rate Er. L rate
100 8.22¢-03 - 0.22e -00 -
200 4.48e - 03 0.88 0.25¢ -00 -0.20
400 2.62e-03 0.77 0.33e-00 -0.37
Table 6
E; and E;  errors and convergence rates for the WENO method for Sod’s shock tube at different grid resolutions
N E;, L, rate E; Ly, rate
100 1.58e - 02 - 0.37e -00 —
200 8.24¢ - 03 0.93 0.40¢ - 00 —-0.01
400 4.47e-03 0.88 0.46e - 00 —0.18

« We plotted the errors as a function of position too.
WENO is worse than PLMDE almost everywhere,
but for a much greater computational expense of ]
Six times greater. :

« Asymptotic rates of 4/5 and 2/3 respectively oo

- For this problem theoretically WENO would win at | | a8
a ridiculous resolution ~2,000,000 cells B I




LeBlanc's shock tube - Density Error
Computed with 100 cells is dominated by error in the shock

location.
This problem used to be a survival test for codes, but now is a
verification problem.
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The Lagrangian solution leads the exact solution,
whereas the PPMs solution lags the exact.
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We can look at Noh’s solution in detail.

Noh’s problem used to be a survival problem for codes
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Many problems do not have an analytical solution, but are |
useful nonetheless. @!

One of the best of these problems is Woodward and Colella’s interacting ‘
blast wave problem.
(P (L N[ 1 N1 |
u 0 0 0
; ; , vy=14
p| | 1000 0.01 100
L x) 10,0.1) 10.1,09) 09,1 |
Despite being non-analytic it is one of the most discerning of common
test problems. I
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The W-C Blast Wave Problem in detail |
The issue is whether one can get the solution to interacting ED!

shock waves correct.
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test of methods and behavior under mesh refinement

cPLM6 240x60 Grid xPPM6 240x60 Grid

The Mach reflection has had a long, fruitful life. It is a qualitative @!I
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There is also the Shu-Osher entropy wave problem - idealized |
shock-turbulence m
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Void expansion results have asked more
fundamental questions of the code. Current
methods cannot solve this problem properly. ‘

Stability issues associated with the expansion problem highlight a

fundamental oversight
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initial conditions arising from a change in pressure (Ap) I



| Summary

«  The null hypothesis is a useful way to conduct science and V&V.

- The gist is to provide an adversarial viewpoint that tests a code
or model more aggressively. If the code/model can stand up to
this aggressive testing, the confidence of correctness is much

nigher.

» | showed the way this looks for code verification of a shock |
ohysics codes. The analysis couples theory to deep quantitative
analysis applicable to applications. I

* Bottom Line: Assuming the code is wrong and failing to find
evidence is stronger evidence that the code is correct. Itis
a better way to do verification (and validation). |



