
Sandia National Laboratories is a
multimission laboratory managed

and operated by National Technology
& Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of

Honeywell International Inc., for the
U.S. Department of Energy’s National
Nuclear Security Administration under

contract DE-NA0003525.

ShellLogger
Keeping Track of Python's
Interactions with the Shell

SAND2022-#### #

Jason M. Gates , David Col l ins , Josh Braun

May 24, 2022

SAND2022-6764CThis paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in
the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Motivation
curl -L http://github.com/Kitware/CMake/releases/download/v3.20.2/cmake-3.20.2.tar.gz | tar xzf -
cd cmake-3.20.2
./bootstrap --no-qt-gui --parallel=8 --prefix=$HOME/cmake-3.20.2
make -j8
make install

2

Motivation
curl -L http://github.com/Kitware/CMake/releases/download/v3.20.2/cmake-3.20.2.tar.gz > run.txt
cd cmake-3.20.2
./bootstrap --no-qt-gui --parallel=8 --prefix=$HOME/cmake-3.20.2
make -j8
make install

Could get you this:
 % Total % Received % Xferd Average Speed Time Time Time Current
 Dload Upload Total Spent Left Speed
 0 0 0 0 0 0 0 0 --:--:-- 0:02:06 --:--:-- 0
curl: (7) Failed connect to github.com:80; Connection timed out

Because of this:
$ printenv http_proxy
$

3

Motivation
curl -L http://github.com/Kitware/CMake/releases/download/v3.20.2/cmake-3.20.2.tar.gz | tar xzf -
cd cmake-3.20.2
./bootstrap --no-qt-gui --parallel=8 --prefix=$HOME/cmake-3.20.2
make -j8
make install

Could get you this:
Error when bootstrapping CMake:
Cannot find a C++ compiler that supports both C++11 and the specified C++ flags.
Please specify one using environment variable CXX.
The C++ flags are "".
They can be changed using the environment variable CXXFLAGS.
See cmake_bootstrap.log for compilers attempted.

Log of errors: /tmp/cmake-3.20.2/Bootstrap.cmk/cmake_bootstrap.log

Because of this:
$ printenv CC
$ printenv CXX
icpc

4

Motivation
curl -L http://github.com/Kitware/CMake/releases/download/v3.20.2/cmake-3.20.2.tar.gz | tar xzf -
cd cmake-3.20.2
./bootstrap --no-qt-gui --parallel=8 --prefix=$HOME/cmake-3.20.2
make -j8
make install

What do we need?
 Environment variables

What else would be nice?
 Working directory
 Hostname
 User and group
 umask
 Return code
 ulimit
 Duration
 Resource usage (CPU, memory, disk)

5

Enter ShellLogger

Python module that keeps track of context in a HTML log file

Similar in principle to Unix script command
with substantially more functionality

Motivation similar to Python’s logging module
but captures what’s happening in the shell rather than in Python

6

Command
Description
stdout and stderr
Environment variables
Working directory
hostname
User and group

umask
Return code
ulimit
Start time & duration
 (Optional) CPU, memory, and disk

usage
 (Optional) strace or ltrace

Enter ShellLogger

 Why Python? Why not bash?
Community standards

 Style: PEP8 (flake8, YAPF)
Documentation: Sphinx
 Testing: pytest

Easier to write, maintain, reuse, etc.

Future developers likely more proficient with it

Near-ubiquitous

7

Enter ShellLogger
Shell:
Description of cmd1
cmd1

Description of cmd2
cd /different/dir
cmd2
cd -

Python + ShellLogger:
(stdout and stderr to HTML only)

from shelllogger import ShellLogger
from Pathlib import Path
sl = ShellLogger("Name of Script", Path.cwd()/"log")
sl.log("Description of cmd1", cmd1)
sl.log("Description of cmd2", cmd2, Path("/different/dir"))
sl.finalize()

See log/Name_of_Script.html for results.

8

Enter ShellLogger
Shell:
Description of cmd1
cmd1

Description of cmd2
cd /different/dir
cmd2
cd -

Python + ShellLogger:
(stdout and stderr to HTML and console)

from shelllogger import ShellLogger
from Pathlib import Path
sl = ShellLogger("Name of Script", Path.cwd()/"log")
sl.log("Description of cmd1", cmd1, live_stdout=True, live_stderr=True)
sl.log("Description of cmd2", cmd2, Path("/different/dir"),
 live_stdout=True, live_stderr=True)
sl.finalize()

See log/Name_of_Script.html for results.

9

Enter ShellLogger
Shell:
Description of cmd1
cmd1

Description of cmd2
cd /different/dir
cmd2
cd -

Python + ShellLogger:
(stdout and stderr to HTML, capture resource usage)

from shelllogger import ShellLogger
from Pathlib import Path
sl = ShellLogger("Name of Script", Path.cwd()/"log")
sl.log("Description of cmd1", cmd1, measure=["cpu", "memory", "disk"])
sl.log("Description of cmd2", cmd2, Path("/different/dir"),
 measure=["cpu", "memory", "disk"])
sl.finalize()

See log/Name_of_Script.html for results.

10

Example11

git clone --depth 1 --branch flex-2.5.39 https://github.com/westes/flex.git flex-2.5.39
cd flex-2.5.39 ; ./autogen.sh
./configure --prefix=$(dirname $(pwd))/flex
cd ./lib ; make libcompat.la
cd .. ; make install-exec

from shelllogger import ShellLogger
from pathlib import Path

sl = ShellLogger("Build Flex", Path.cwd()/"log")

sl.log("Clone the Flex repository",
 "git clone --depth 1 --branch flex-2.5.39 https://github.com/westes/flex.git flex-2.5.39",
 live_stdout=True, live_stderr=True)
sl.log("Run Autogen", "./autogen.sh", Path.cwd()/"flex-2.5.39",
 live_stdout=True, live_stderr=True)
sl.log("Configure", "./configure --prefix=$(dirname $(pwd))/flex", Path.cwd()/"flex-2.5.39",
 live_stdout=True, live_stderr=True, measure=["cpu", "memory", "disk"])
sl.log("Build libcopmpat.la", "make libcompat.la", Path.cwd()/"flex-2.5.39/lib",
 live_stdout=True, live_stderr=True, measure=["cpu", "memory", "disk"])
sl.log("Build & Install Flex", "make install-exec", Path.cwd()/"flex-2.5.39",
 live_stdout=True, live_stderr=True, measure=["cpu", "memory", "disk"])

sl.finalize()

What Do You Get?12

What Do You Get?13

Click to expand for
more details

What Do You Get?14

What Do You Get?15

What Do You Get?16

What Do You Get?17

What Do You Get?18

What Do You Get?

 In this example:
Command
Description
Duration
Return code, user, group, umask, working directory, hostname, shell
Regex-searchable stdout and stderr
Regex-searchable environment variable list
ulimit
CPU, memory, and disk usage

19

Other Features

strace/ltrace with expression filters
 e.g., execve, getenv

Statefulness
 Logger.log affects later Logger.log calls (e.g., export VAR=VALUE)
 Unlike Python’s os.system or subprocess.run

Logger.log returns things in Python
 A dict including return_code, stdout, stderr

Child loggers via Logger.add_child
 Independent shells
 Hierarchical HTML pages

20

What Problems Have We Solved with ShellLogger?
 Mysterious "No space left on device" in the middle of a make

 $ make - ⁠k - ⁠j 32
 ...
 No space left on device
 FATAL ERROR: fwrite on file failed

 $ df -h $(pwd)
 Filesystem Size Used Avail Use% Mounted on
 srv3:/shares/home 25T 15T 10T 60% /home

 Why? Space used on /tmp
 Solved by setting TMPDIR before compiling

with Intel or CUDA

21

What Problems Have We Solved with ShellLogger?
 Random terminations of the compiler in the middle of a make

 make - ⁠k - ⁠j 80
 ...
 icpc: error #10106: Fatal error in /path/to/mcpcom, terminated by kill signal

 Why? Memory usage
 needed to decrease -⁠j

22

Release

 Where to find ShellLogger?
Currently internal to Sandia National Laboratories

Working on InnerSourcing

Hope to open-source within the next year

23

Questions?24

