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Motivation
curl -L http://github.com/Kitware/CMake/releases/download/v3.20.2/cmake-3.20.2.tar.gz | tar xzf -
cd cmake-3.20.2
./bootstrap --no-qt-gui --parallel=8 --prefix=$HOME/cmake-3.20.2
make -j8
make install
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Motivation
curl -L http://github.com/Kitware/CMake/releases/download/v3.20.2/cmake-3.20.2.tar.gz > run.txt
cd cmake-3.20.2
./bootstrap --no-qt-gui --parallel=8 --prefix=$HOME/cmake-3.20.2
make -j8
make install

Could get you this:
 % Total    % Received % Xferd  Average Speed   Time    Time     Time  Current
                                 Dload  Upload   Total   Spent    Left  Speed
  0     0    0     0    0     0      0      0 --:--:--  0:02:06 --:--:--     0
curl: (7) Failed connect to github.com:80; Connection timed out

Because of this:
$ printenv http_proxy
$ 
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Motivation
curl -L http://github.com/Kitware/CMake/releases/download/v3.20.2/cmake-3.20.2.tar.gz | tar xzf -
cd cmake-3.20.2
./bootstrap --no-qt-gui --parallel=8 --prefix=$HOME/cmake-3.20.2
make -j8
make install

Could get you this:
Error when bootstrapping CMake:
Cannot find a C++ compiler that supports both C++11 and the specified C++ flags.
Please specify one using environment variable CXX.
The C++ flags are "".
They can be changed using the environment variable CXXFLAGS.
See cmake_bootstrap.log for compilers attempted.
---------------------------------------------
Log of errors: /tmp/cmake-3.20.2/Bootstrap.cmk/cmake_bootstrap.log
---------------------------------------------

Because of this:
$ printenv CC
$ printenv CXX
icpc
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Motivation
curl -L http://github.com/Kitware/CMake/releases/download/v3.20.2/cmake-3.20.2.tar.gz | tar xzf -
cd cmake-3.20.2
./bootstrap --no-qt-gui --parallel=8 --prefix=$HOME/cmake-3.20.2
make -j8
make install

What do we need?
 Environment variables

What else would be nice?
 Working directory
 Hostname
 User and group
 umask
 Return code
 ulimit
 Duration
 Resource usage (CPU, memory, disk)
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Enter ShellLogger

Python module that keeps track of context in a HTML log file

Similar in principle to Unix script command
with substantially more functionality

Motivation similar to Python’s logging module
but captures what’s happening in the shell rather than in Python
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Command
Description
stdout and stderr
Environment variables
Working directory
hostname
User and group

umask
Return code
ulimit
Start time & duration
 (Optional) CPU, memory, and disk 

usage
 (Optional) strace or ltrace



Enter ShellLogger

 Why Python?  Why not bash?
Community standards

 Style:  PEP8 (flake8, YAPF)
Documentation:  Sphinx
 Testing:  pytest

Easier to write, maintain, reuse, etc.

Future developers likely more proficient with it

Near-ubiquitous
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Enter ShellLogger
Shell:
# Description of cmd1
cmd1

# Description of cmd2
cd /different/dir
cmd2
cd -

Python + ShellLogger:
(stdout and stderr to HTML only)

from shelllogger import ShellLogger
from Pathlib import Path
sl = ShellLogger("Name of Script", Path.cwd()/"log")
sl.log("Description of cmd1", cmd1)
sl.log("Description of cmd2", cmd2, Path("/different/dir"))
sl.finalize()

See log/Name_of_Script.html for results.
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Enter ShellLogger
Shell:
# Description of cmd1
cmd1

# Description of cmd2
cd /different/dir
cmd2
cd -

Python + ShellLogger:
(stdout and stderr to HTML and console)

from shelllogger import ShellLogger
from Pathlib import Path
sl = ShellLogger("Name of Script", Path.cwd()/"log")
sl.log("Description of cmd1", cmd1, live_stdout=True, live_stderr=True)
sl.log("Description of cmd2", cmd2, Path("/different/dir"),
       live_stdout=True, live_stderr=True)
sl.finalize()

See log/Name_of_Script.html for results.
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Enter ShellLogger
Shell:
# Description of cmd1
cmd1

# Description of cmd2
cd /different/dir
cmd2
cd -

Python + ShellLogger:
(stdout and stderr to HTML, capture resource usage)

from shelllogger import ShellLogger
from Pathlib import Path
sl = ShellLogger("Name of Script", Path.cwd()/"log")
sl.log("Description of cmd1", cmd1, measure=["cpu", "memory", "disk"])
sl.log("Description of cmd2", cmd2, Path("/different/dir"),
       measure=["cpu", "memory", "disk"])
sl.finalize()

See log/Name_of_Script.html for results.
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Example11

git clone --depth 1 --branch flex-2.5.39 https://github.com/westes/flex.git flex-2.5.39
cd flex-2.5.39 ; ./autogen.sh
./configure --prefix=$(dirname $(pwd))/flex
cd ./lib ; make libcompat.la
cd .. ; make install-exec

from shelllogger import ShellLogger
from pathlib import Path

sl = ShellLogger("Build Flex", Path.cwd()/"log")

sl.log("Clone the Flex repository",
       "git clone --depth 1 --branch flex-2.5.39 https://github.com/westes/flex.git flex-2.5.39",
       live_stdout=True, live_stderr=True)
sl.log("Run Autogen", "./autogen.sh", Path.cwd()/"flex-2.5.39",
       live_stdout=True, live_stderr=True)
sl.log("Configure", "./configure --prefix=$(dirname $(pwd))/flex", Path.cwd()/"flex-2.5.39",
       live_stdout=True, live_stderr=True, measure=["cpu", "memory", "disk"])
sl.log("Build libcopmpat.la", "make libcompat.la", Path.cwd()/"flex-2.5.39/lib",
       live_stdout=True, live_stderr=True, measure=["cpu", "memory", "disk"])
sl.log("Build & Install Flex", "make install-exec", Path.cwd()/"flex-2.5.39",
       live_stdout=True, live_stderr=True, measure=["cpu", "memory", "disk"])

sl.finalize()



What Do You Get?12



What Do You Get?13

Click to expand for 
more details
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What Do You Get?18



What Do You Get?

 In this example:
Command
Description
Duration
Return code, user, group, umask, working directory, hostname, shell
Regex-searchable stdout and stderr
Regex-searchable environment variable list
ulimit
CPU, memory, and disk usage
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Other Features

strace/ltrace with expression filters
 e.g., execve, getenv

Statefulness
 Logger.log affects later Logger.log calls (e.g., export VAR=VALUE)
 Unlike Python’s os.system or subprocess.run

Logger.log returns things in Python
 A dict including return_code, stdout, stderr

Child loggers via Logger.add_child
 Independent shells
 Hierarchical HTML pages
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What Problems Have We Solved with ShellLogger?
 Mysterious "No space left on device" in the middle of a make

 $ make - ⁠k - ⁠j 32
 ...
 No space left on device
 FATAL ERROR: fwrite on file failed

 $ df -h $(pwd)
 Filesystem         Size  Used Avail Use%  Mounted on
 srv3:/shares/home   25T   15T   10T  60%  /home

 Why?  Space used on /tmp
 Solved by setting TMPDIR before compiling

with Intel or CUDA
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What Problems Have We Solved with ShellLogger?
 Random terminations of the compiler in the middle of a make

 make - ⁠k - ⁠j 80
 ...
 icpc: error #10106: Fatal error in /path/to/mcpcom, terminated by kill signal

 Why?  Memory usage
 needed to decrease -⁠j
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Release

 Where to find ShellLogger?
Currently internal to Sandia National Laboratories

Working on InnerSourcing

Hope to open-source within the next year
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Questions?24


