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Learning Objectives

1. Understand the importance of future weather boundary conditions in climate driven resilience and
efficiency analysis.

2. Understand why a stochastic framework is needed to assess resilience versus efficiency combined
assessments.

3. Introduction of VCWG modeling paradigm and sub-modules: the rural, rural surface energy-water balance,
building energy, surface energy-water balance, soil energy-water balance, vertical diffusion, and urban
boundary layer models.

4. Preparation of weather data as boundary and forcing conditions for BEMs: observed weather files, meso-scale
models, and downscaling of climate models to produce weather files

ASHRAE is a Registered Provider with The American Institute of Architects Continuing Education
Systems. Credit umwd on completion of this program will be reported to ASHRAE Records for
AIA members. Certificates ()JI Completion for non-AlA members are available on request.

This program is registered with the AIA/ASHRAE for continuing professional education. As such,
it does not include content that may be deemed or construed to be an approval or endorseme nt
by the AIA of any material of construction or any method or manner of handling, using,
distributing, or dealing in any material or product. Questions related to specific materials,
methods, and services will be addressed at the conclusion of this presentation.
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Why future weather?

b) Change in global surface temperature (annual average) as observed and
simulated using human & natural and only natural factors (both 1850-2020)
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Why future weather? (2)

Hot temperature extremes over land
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Why future weather? (3)

3. Increased demand for resilience to future design basis threats (DBR)
* Resilience analysis requires simulation of a system’s failure and
recovery due to DBR’s

Other DBR’s Earthquake
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Why a stochastic approach?

How much money should be invested in resilience?
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A Stochastic weather and model approach allows simultaneous assessment of ordinary
(blue-sky) and resilience (black-sky) outcomes

Figures adapted from Villa et. al, 2022. “Low Cost Community Microgrids by Efficiency and Reduced Availability” ASHRAE Summer meeting 2022 (separate presentation).



Multi-scenario Extreme Weather Simulator (MEWS)

1. Stochastic weather file generation for building energy
modeling (BEM) resilience analysis
* Outputs weather files for major BEM tools

2. Used for a site-wide energy assessment for SNL NM
3. Open-source python (https://github.com/sandialabs/MEWS)
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https://github.com/sandialabs/MEWS

MEWS Objectives

1. Provide extreme weather files that contain statistically realistic increases in severity and
frequency based on climate model predictions and historical data

* Extreme temperature (heat waves and extreme cold)

* Future:
Extreme Precipitation, Drought, Hurricanes, ...

2. Quickly generate files with reasonable output with a data-driven approach

Data here includes climate model outputs

* Fuse historical data and climate projections into “best-guess” sampling distributions and
Markov processes

3. Keep the algorithm simple (as possible!)

10



MEWS Algorithm
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Step 1: Data and extreme temperature

definition

National Oceanic and Atmospheric Association (NOAA)
* Climate norms (1991-2020)

* Daily summaries
Definition
Heat wave: 2 days of either daily maximum temperature greater than 90%

climate norm maximum temperature or daily minimum temperature
greater than climate norm daily 10 % minimum temperature

Cold snap: 2 days of either daily minimum temperature less than 10%
climate norm minimum temperature or daily maximum temperature less
than climate norm 10% daily maximum

https://www.publicdomainpictures.net/en/view-image.php?image=282100&picture=radiation-background



Climate norms data

90% maximum hourly
* Hourly time scale 8760

* Statistical distributionson ~ _—  —7T 50% average hourly (used for severity
minimum, average,and /-~ .- measure)

maximum data

10% minimum hourly
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Daily summaries

Chosen because longest historical records available

Daily maximum, minimum, and average temperatures

Albuquerque NM 90 years of daily summary data

3 B A
%é |"r A; ' Lﬂ\'l |“ ._' :' “Rl 1 || fl N | ';_; 1"'.['{'1' | '_ur-' Mﬂ NH .|'ﬂ|' ll

12/8/1930 8/16/1944 4/25/1958

Temperature
Sk o
Temperature (°F)

1/2/1972 9/10/1985 5/20/1999 1/26/2013




2 Day heat wave example
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2 Day cold snap example
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Step 2: Calculate the Markov probabilities for heat waves and cold snaps

(Frequency and Duration)

1. Probability of heat wave Py, ~ number of heat waves in historic record for month m / total hours in

historic record for month m

Drw
y hwsm

probability a heat wave is of a given duration divided by the sum of all heat wave’s duration
3. Similar reasoning for cold snaps

2. Probability of sustaining a heat wave when in a heat wave Py,s  find via regression of

1 — B‘twm o PCSJ?I F, CSm BIWH?
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Steps 3-7: Characterize extreme temperature event severity

Heat wave severity is magnitude measured above daily average of climate
norms. Each heat wave has a AT}, peak.
Forms a set {AT},, } for each month of the year.

The difference between the heat wave daily maximum temperature and daily
average of climate norms is also integrated to form the total energy AE},,, in
°C - day added by each heat waves.

Form a second set {AE},, } for each month of the year.

Perform several statistical steps to form truncated Gaussian distributions of
AT ~Nar(Upt, Oar, Apat, bar), Nnormalize the results by D and scale to -1...1



Truncated Gaussian

Enables

1. Maximum and minimum historic cases
to be the bounds of the distribution

2. Fitting asymmetry (skew) in data

A
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Step 8: Calculate shift in all parameters based on IPCC data

For each IPCC climate scenario, year, and month each
year, calculate shifts AM, Au, Ao, Aa, Ab

/ !/ / /
Phwm —I_ PCS,” o Ph Win o P P B PCS””-' Ph Win o Phw"”

CSim CSi
AM,, = " ’
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/ !
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Several assumptions needed here so that IPCC data provided for 10 and 50 year extreme temperature eventsis
adequate:

1. Assumeincreasein AT is proportional to AE
2. Weighted averages for modified sustained heat wave probabilities (cannot meet 10 and 50 year events exactly
with single Markov parameters)



IPCC scenarios (global average here)

IPCC scenarios drive how severe extreme temperature events become in future years

a) Global surface temperature change relative to 1850-1200
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Steps: 9-11 Produce stochastic realizations

1. Calculate extreme event initiation and duration for many future years from stochastic
sampling of the M + AM Markov process.

2. Sample extreme event duration normalized temperature and energy increases

3. Retrieve durations for each heat wave, reverse transform from -1...1 and denormalize
duration to produce physical AT and AFE for each extreme event

4. Solve for heat wave functional form narameters A.B.C
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Extreme event functional form
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Steps 12-13: Output BEM file

e Start with input from an EnergyPlus *.epw or DOE-2 *.bin
weather file

 QOutputs *.epw and *.bin weather files with stochastic
changes to temperature

* These files can then be used as input to stochastic
resilience analysis!



Albuquerque results

Heat Waves
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Hot/Cold extreme example

* MEWS produces a user specified 100
number of realizations based on 751
historical data and IPCC N
projections for extreme heat

257

R1

oy @)

and COld Elﬂﬁ- — extreme 40@
- Jo| T TMY3 =

a 20 &

& s0 £

= [

£ 25 o 2

om o

z ' :

R2 -

3 demo realizations for
possible future heat wave
conditions in Albuquerque

100
751

501
25

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
2021

40




Markov State (0,1,2)
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Multi-state Markov chains

* MEWS has an efficient tested multi-state Markov chain algorithm
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Conclusions

* Stochastic weather generation for future files can be an important part of resilience
analysis

* The MEWS algorithm has been developed and has been briefly reviewed. It is available as
open-source code: https://github.com/sandialabs/MEWS

* Practical application of MEWS using BEM is currently underway
* Significant enhancements are envisioned:
1. Validate MEWS against climate model future weather for several cases
2. Show convergence of multi-parameter stochastic resilience analysis
3. Generalize heat wave definition and functional form and show that it mimic weather

4. Extend heat waves to include humidity, pressure, wind, cloud, and other effects



Questions?

Daniel Villa

dlvilla@sandia.gov



