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Introduction . Deep Generative Model Architecture - Experimental Results
‘ Validation with Single Phase Flow Application
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to learn the approximate distribution from multipoint geostatistics-derived training
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(b) Permeability estimation using observed data at 4 injection and 2 monitoring wells
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Model Reduction where Cjyp is the cross-covariance between the model parameters and T, B ERER T [ | P i [

y = F(m) = F(G(z)))

* yisa(nobs x 1) simulated observation vector,

* F 1s a flow model that produces outputs at obs. locations

* mis a(m x m) permeability matrix, with any (nonlinear) dimension reduction: el 7 o I - (e 2 R o

* G is a generator or deterministic map from z to s y = F(G(z)), dim(z) << dim(m) Bl oo 0 i et | e iin
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* z1sa(kx k) latent space matrix. . . . . 1 . .
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G(z) can be obtained from any generative models and here we used ZD\“DD i“D uc

Variational AutoEncoder (VAE) and Wasserstein Generative Adversaria VAE/WGAN is our choice since it constructs the prior z~N (0, I)
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simulated data, Cpp is the auto-covariance of the simulated data, Cp is B Fo s o L s Rt ] i e
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the observation error covariance, d' is the simulated data, d;,. is the
perturbed observation data, and «a; is an inflation factor.
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Forward modeling:
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