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> | Background

* Need for inexpensive, safe, reliable, high-

capacity batteries for grid storage

* Li-S is high capacity and low cost

* Increasing to grid scale requires a change
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s 1 Flow Cell Design

Benefits:

_ catholyte
electrochemical cell reservoir

Improved safety

« Separation of anode and cathode
decreases risk of thermal runaway

Decreased cost

* No need for ion selective separators or
excess carbon

« Scalability
* Increased S loading without hindering
diffusion

carbon felt

Meyerson, M. L; Rosenberg, S. G,; Small, L. J., ACS Applied Energy Materials 2022, 5 (4), 4202-4211.



+ 1 Flow Cell Design

| catholyte * Hybrid design with solid Li metal anode
electrochemical cell reservoir protected from dendrite growth and
polysulfide shuttling by Lil and LiNO,.

« Electrolyte containing dissolved redox
mediators (RMs) is pumped from the
reservoir to the carbon felt electrode.

e The RMs are oxidized or reduced at the
carbon felt and returned to the reservoir.

carbon felt

Meyerson, M. L; Rosenberg, S. G,; Small, L. J., ACS Applied Energy Materials 2022, 5 (4), 4202-4211.



I Cobaltocene and Decamethyl Ferrocene as Redox Mediators

DmFc |

Current (normalized)
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CVs taken at 10 mV/s in 1M LiTFSI 1:1 DOL:DME, glassy carbon working
electrode, Pt counter electrode, Li reference electrode.

|deal Redox Mediator

* Close to Li-S reaction (~2.4 V vs

Li/Li*)
Epnr.= 2.86 V
Ecocp = 2.06 V

 Good reaction kinetics
K mee = 4.33 x 103 cm s
kococp2=3.14 x 10 cm s

 Fast diffusion
Domee = 523 x 106 cm? s
Dcocpz = 3.70 x 10° cm? 8™
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7 | Limitations of Planar Li Anodes

« Dendrites decrease battery life and
cause short circuits.

Li deposition

* Increased charge rate exacerbates
problems with dendrites.

* Ni foam with 97% porosity has ~10x the surface area of
planar Ni foll.

Increasing effective surface area decreases the local
current density.

Bare Ni foam



|
s 1 Moving from Planar to 3D Anode Scaffolds m

- Symmetric cells with Li foil counter electrode and Ni foil or foam as current collector for

working electrode

* Test coulombic efficiency at increasing current densities
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o 1 Increased Surface Area Allows Faster Charging

« For planar deposition, charging above 1 mA cm- results in unstable cycling and shorting.

Ni foil at 5 mA cm2 for 0.5 mAh cm™ Ni foam at 10 mA cm2 for 0.5 mAh cm™
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Using high SA foam, charge rate can be 10 times faster.




o I Increased Surface Area Allows Faster Charging
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Lower current densities show better CE on the Ni
foil than the bare Ni foam, likely from low
utilization of the foam.
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11

Seeding Li Deposition

Nucleation overpotential on Ni comes from lattice mismatch between the metals.

Temperature, °C
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2 1 Seeding Li Deposition

* Nucleation overpotential of Li on ZnO is lower than Ni, leading to preferential Li deposition
on the ZnO.
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Zn0O Synthesis on Ni Foam

* Hydrothermal synthesis of ZnO nanorods on Ni foam
« Zinc acetate and hexamine in water

X-ray diffraction of ZnO nanorods on Ni foam

' ' SEM of ZnO nanorods
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Synthesis procedure: Sun, C.; Li,Y,; Jin, J,; Yang, J., Wen, Z., J. Mater. Chem. A 2019, 7 (13), 7752-7759.



14 | ZnQO Further Improves System

* Nucleation overpotential decreases from 68 mV to 10 mV and CE increases compared to bare Ni foam at
low current densities.
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ZnO decreases the nucleation overpotential and improves coulombic

efficiency.



s 1 Conclusions

* Li-S chemistry can be adapted to work in a flow cell architecture.

 High S loadings enable long discharge times and show feasibility of use
for long duration storage.

« High surface area scaffolds increase the maximum cycling current
density.

Li-S is a promising chemistry to use for high capacity, long duration, grid-scale energy

storage.




6 | Future Work

Scaling up the flow cell by combining a high S loading flow cell with a ZnO
on Ni foam scaffold to enable faster charging and discharging of flow cell at
realistic energy densities.

_ catholyte
electrochemical cell reservoir

Li supported
on Ni foam

carbon felt



7 1 Acknowledgments A\ OFFICE OF ELECTRICITY

We thank the DOE Office of Electricity, Energy Storage Program
managed by Dr. Imre Gyuk for funding this work!

Melissa Meyerson
mimeyer@sandia.gov

YY) ENERGY STORAGE PROGRAM

&



